--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: google-bert/bert-base-uncased metrics: - accuracy - f1 model-index: - name: lora_fine_tuned_copa results: [] --- # lora_fine_tuned_copa This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6918 - Accuracy: 0.46 - F1: 0.4570 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 400 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7088 | 1.0 | 50 | 0.6921 | 0.48 | 0.48 | | 0.7024 | 2.0 | 100 | 0.6922 | 0.49 | 0.4894 | | 0.6993 | 3.0 | 150 | 0.6921 | 0.46 | 0.4587 | | 0.7005 | 4.0 | 200 | 0.6920 | 0.48 | 0.4788 | | 0.6989 | 5.0 | 250 | 0.6919 | 0.47 | 0.4679 | | 0.7018 | 6.0 | 300 | 0.6919 | 0.46 | 0.4570 | | 0.6943 | 7.0 | 350 | 0.6919 | 0.46 | 0.4570 | | 0.6943 | 8.0 | 400 | 0.6918 | 0.46 | 0.4570 | ### Framework versions - PEFT 0.10.1.dev0 - Transformers 4.40.1 - Pytorch 2.3.0 - Datasets 2.19.0 - Tokenizers 0.19.1