--- license: mit base_model: gpt2 datasets: - wikitext language: - en - vi metrics: - perplexity library_name: transformers pipeline_tag: text-generation tags: - code - text-generation-inference - generated_from_trainer model-index: - name: gpt2-finetuned-wikitext2 results: [] --- # gpt2-finetuned-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: {loss: 3.6248738765716553, perplexity: 37.519989013671875} # Model Card for Model ID This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] The following hyperparameters were used during training: - learning_rate: 5e-04 - train_batch_size: 8 - eval_batch_size: 8 - optimizer: AdamW - lr_scheduler_type: linear - num_epochs: 2.0 #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results | Epoch | Step | Validation Loss | |:-----:|:----:|:---------------:| | 1.0 | 1000 | 3.6487 | | 1.0 | 2000 | 3.6033 | | 2.0 | 1000 | 3.6578 | | 2.0 | 2000 | 3.6434 | #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]