|
|
|
import json |
|
import os.path as osp |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import torch |
|
import triton_python_backend_utils as pb_utils |
|
from torch.nn.utils.rnn import pad_sequence |
|
|
|
|
|
|
|
|
|
|
|
from .tokenizer.tokenizer import Tokenizer |
|
|
|
|
|
class TritonPythonModel: |
|
"""Your Python model must use the same class name. |
|
|
|
Every Python model that is created must have "TritonPythonModel" as the |
|
class name. |
|
""" |
|
|
|
def initialize(self, args): |
|
"""`initialize` is called only once when the model is being loaded. |
|
Implementing `initialize` function is optional. This function allows |
|
the model to initialize any state associated with this model. |
|
Parameters |
|
---------- |
|
args : dict |
|
Both keys and values are strings. The dictionary keys and values are: |
|
* model_config: A JSON string containing the model configuration |
|
* model_instance_kind: A string containing model instance kind |
|
* model_instance_device_id: A string containing model instance device |
|
ID |
|
* model_repository: Model repository path |
|
* model_version: Model version |
|
* model_name: Model name |
|
""" |
|
|
|
self.model_config = model_config = json.loads(args['model_config']) |
|
|
|
|
|
input_names = ['INPUT_ID', 'REQUEST_INPUT_LEN'] |
|
for input_name in input_names: |
|
setattr( |
|
self, |
|
input_name.lower() + '_dtype', |
|
pb_utils.triton_string_to_numpy( |
|
pb_utils.get_output_config_by_name( |
|
model_config, input_name)['data_type'])) |
|
|
|
cur_folder = Path(__file__).parent |
|
self.tokenizer = Tokenizer( |
|
osp.join( |
|
cur_folder, self.model_config['parameters']['tokenizer_path'] |
|
['string_value'])) |
|
self.start_id = self.tokenizer.bos_token_id |
|
self.end_id = self.tokenizer.eos_token_id |
|
|
|
def execute(self, requests): |
|
"""`execute` must be implemented in every Python model. `execute` |
|
function receives a list of pb_utils.InferenceRequest as the only |
|
argument. This function is called when an inference is requested |
|
for this model. Depending on the batching configuration (e.g. Dynamic |
|
Batching) used, `requests` may contain multiple requests. Every |
|
Python model, must create one pb_utils.InferenceResponse for every |
|
pb_utils.InferenceRequest in `requests`. If there is an error, you can |
|
set the error argument when creating a pb_utils.InferenceResponse. |
|
Parameters |
|
---------- |
|
requests : list |
|
A list of pb_utils.InferenceRequest |
|
Returns |
|
------- |
|
list |
|
A list of pb_utils.InferenceResponse. The length of this list must |
|
be the same as `requests` |
|
""" |
|
|
|
responses = [] |
|
|
|
|
|
|
|
for idx, request in enumerate(requests): |
|
|
|
query = pb_utils.get_input_tensor_by_name(request, |
|
'QUERY').as_numpy() |
|
|
|
|
|
input_id, request_input_len = self._create_request(query) |
|
|
|
|
|
|
|
input_id_tensor = pb_utils.Tensor( |
|
'INPUT_ID', |
|
np.array(input_id).astype(self.input_id_dtype)) |
|
request_input_len_tensor = pb_utils.Tensor( |
|
'REQUEST_INPUT_LEN', |
|
np.array(request_input_len).astype( |
|
self.request_input_len_dtype)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inference_response = pb_utils.InferenceResponse( |
|
output_tensors=[input_id_tensor, request_input_len_tensor]) |
|
responses.append(inference_response) |
|
|
|
|
|
|
|
return responses |
|
|
|
def finalize(self): |
|
"""`finalize` is called only once when the model is being unloaded. |
|
|
|
Implementing `finalize` function is optional. This function allows the |
|
model to perform any necessary clean ups before exit. |
|
""" |
|
print('Cleaning up...') |
|
|
|
def _create_request(self, query): |
|
"""Tokenize prompts and return the token ids and their length. |
|
|
|
Args: |
|
query (List[str]): a list of prompt |
|
Returns: |
|
tuple: token ids and their length |
|
""" |
|
start_ids = [] |
|
for s in query: |
|
_s = s[0].decode() |
|
if _s == '<BOS>': |
|
start_id = [self.start_id |
|
] if self.start_id is not None else [-1] |
|
elif _s == '<EOS>': |
|
start_id = [self.end_id] if self.end_id is not None else [-1] |
|
else: |
|
start_id = self.tokenizer.encode(_s) |
|
start_ids.append(torch.IntTensor(start_id)) |
|
|
|
start_lengths = torch.IntTensor([[len(ids)] for ids in start_ids]) |
|
start_ids = pad_sequence(start_ids, |
|
batch_first=True, |
|
padding_value=self.end_id) |
|
return start_ids, start_lengths |
|
|