# Copyright (c) OpenMMLab. All rights reserved. import json import os import os.path as osp from typing import Optional, Sequence, Union import torch class SentencePieceTokenizer: """Tokenizer of sentencepiece. Args: model_file (str): the path of the tokenizer model """ def __init__(self, model_file: str): from sentencepiece import SentencePieceProcessor self.model = SentencePieceProcessor(model_file=model_file) self._prefix_space_tokens = None @property def vocab_size(self): """vocabulary size.""" return self.model.vocab_size() @property def bos_token_id(self): """begine of the sentence token id.""" return self.model.bos_id() @property def eos_token_id(self): """end of the sentence token id.""" return self.model.eos_id() @property def prefix_space_tokens(self): """tokens without prefix space.""" if self._prefix_space_tokens is None: vocab = self.model.IdToPiece(list(range(self.vocab_size))) self._prefix_space_tokens = { i for i, tok in enumerate(vocab) if tok.startswith('▁') } return self._prefix_space_tokens def _maybe_add_prefix_space(self, tokens, decoded): """maybe add prefix space for incremental decoding.""" if len(tokens) and not decoded.startswith(' ') and\ tokens[0] in self.prefix_space_tokens: return ' ' + decoded else: return decoded def encode(self, s: str, add_bos: bool = True, **kwargs): """Tokenize a prompt. Args: s (str): a prompt Returns: list[int]: token ids """ return self.model.Encode(s, add_bos=add_bos, **kwargs) def decode(self, t: Sequence[int], offset: Optional[int] = None): """De-tokenize. Args: t (List[int]): a list of token ids offset (int): for incrementally decoding. Default to None, which means not applied. Returns: str: text of decoding tokens """ if isinstance(t, torch.Tensor): t = t.tolist() t = t[offset:] out_string = self.model.Decode(t) if offset: out_string = self._maybe_add_prefix_space(t, out_string) return out_string def __call__(self, s: Union[str, Sequence[str]]): """Tokenize prompts. Args: s (str): prompts Returns: list[int]: token ids """ import addict add_bos = False add_eos = False input_ids = self.model.Encode(s, add_bos=add_bos, add_eos=add_eos) return addict.Addict(input_ids=input_ids) class HuggingFaceTokenizer: """Tokenizer of sentencepiece. Args: model_dir (str): the directory of the tokenizer model """ def __init__(self, model_dir: str): from transformers import AutoTokenizer model_file = osp.join(model_dir, 'tokenizer.model') backend_tokenizer_file = osp.join(model_dir, 'tokenizer.json') model_file_exists = osp.exists(model_file) if not osp.exists(backend_tokenizer_file) and model_file_exists: print('WARNING: Can not find tokenizer.json. ' 'It may take long time to initialize the tokenizer.') self.model = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True) self._prefix_space_tokens = None # save tokenizer.json to reuse if not osp.exists(backend_tokenizer_file) and model_file_exists: if hasattr(self.model, 'backend_tokenizer'): if os.access(model_dir, os.W_OK): self.model.backend_tokenizer.save(backend_tokenizer_file) if self.model.eos_token_id is None: generation_config_file = osp.join(model_dir, 'generation_config.json') if osp.exists(generation_config_file): with open(generation_config_file, 'r') as f: cfg = json.load(f) self.model.eos_token_id = cfg['eos_token_id'] elif hasattr(self.model, 'eod_id'): # Qwen remote self.model.eos_token_id = self.model.eod_id @property def vocab_size(self): """vocabulary size.""" return self.model.vocab_size @property def bos_token_id(self): """begine of the sentence token id.""" return self.model.bos_token_id @property def eos_token_id(self): """end of the sentence token id.""" return self.model.eos_token_id @property def prefix_space_tokens(self): """tokens without prefix space.""" if self._prefix_space_tokens is None: vocab = self.model.convert_ids_to_tokens( list(range(self.vocab_size))) self._prefix_space_tokens = { i for i, tok in enumerate(vocab) if tok.startswith('▁' if isinstance(tok, str) else b' ') } return self._prefix_space_tokens def _maybe_add_prefix_space(self, tokens, decoded): """maybe add prefix space for incremental decoding.""" if len(tokens) and not decoded.startswith(' ') and\ tokens[0] in self.prefix_space_tokens: return ' ' + decoded else: return decoded def encode(self, s: str, add_bos: bool = True, **kwargs): """Tokenize a prompt. Args: s (str): a prompt Returns: list[int]: token ids """ encoded = self.model.encode(s, **kwargs) if not add_bos: # in the middle of a session if len(encoded) and encoded[0] == self.bos_token_id: encoded = encoded[1:] return encoded def decode(self, t: Sequence[int], offset: Optional[int] = None): """De-tokenize. Args: t (List[int]): a list of token ids offset (int): for incrementally decoding. Default to None, which means not applied. Returns: str: text of decoding tokens """ skip_special_tokens = True t = t[offset:] out_string = self.model.decode(t, skip_special_tokens=skip_special_tokens) if offset: out_string = self._maybe_add_prefix_space(t, out_string) return out_string def __call__(self, s: Union[str, Sequence[str]]): """Tokenize prompts. Args: s (str): prompts Returns: list[int]: token ids """ add_special_tokens = False return self.model(s, add_special_tokens=add_special_tokens) class Tokenizer: """Tokenize prompts or de-tokenize tokens into texts. Args: model_file (str): the path of the tokenizer model """ def __init__(self, model_file: str): if model_file.endswith('.model'): model_folder = osp.split(model_file)[0] else: model_folder = model_file model_file = osp.join(model_folder, 'tokenizer.model') tokenizer_config_file = osp.join(model_folder, 'tokenizer_config.json') model_file_exists = osp.exists(model_file) config_exists = osp.exists(tokenizer_config_file) use_hf_model = config_exists or not model_file_exists if not use_hf_model: self.model = SentencePieceTokenizer(model_file) else: self.model = HuggingFaceTokenizer(model_folder) @property def vocab_size(self): """vocabulary size.""" return self.model.vocab_size @property def bos_token_id(self): """begine of the sentence token id.""" return self.model.bos_token_id @property def eos_token_id(self): """end of the sentence token id.""" return self.model.eos_token_id def encode(self, s: str, add_bos: bool = True, **kwargs): """Tokenize a prompt. Args: s (str): a prompt Returns: list[int]: token ids """ return self.model.encode(s, add_bos, **kwargs) def decode(self, t: Sequence[int], offset: Optional[int] = None): """De-tokenize. Args: t (List[int]): a list of token ids offset (int): for incrementally decoding. Default to None, which means not applied. Returns: str: text of decoding tokens """ return self.model.decode(t, offset) def __call__(self, s: Union[str, Sequence[str]]): """Tokenize prompts. Args: s (str): prompts Returns: list[int]: token ids """ return self.model(s)