--- library_name: peft base_model: Korabbit/llama-2-ko-7b tags: - axolotl - generated_from_trainer model-index: - name: 49aaa7bf-9239-479e-b54b-d164deb2195f results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: Korabbit/llama-2-ko-7b bf16: true chat_template: llama3 datasets: - data_files: - b42dc384f1fbdb77_train_data.json ds_type: json format: custom path: /workspace/input_data/b42dc384f1fbdb77_train_data.json type: field_input: line_text field_instruction: prompt field_output: origin_code format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: false hub_model_id: lesso01/49aaa7bf-9239-479e-b54b-d164deb2195f hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 1.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 70GiB max_steps: 30 micro_batch_size: 4 mlflow_experiment_name: /tmp/b42dc384f1fbdb77_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 20 save_strategy: steps sequence_len: 1024 special_tokens: pad_token: strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 14477155-dff6-48f1-8273-002c42289d12 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 14477155-dff6-48f1-8273-002c42289d12 warmup_steps: 5 weight_decay: 0.01 xformers_attention: false ```

# 49aaa7bf-9239-479e-b54b-d164deb2195f This model is a fine-tuned version of [Korabbit/llama-2-ko-7b](https://huggingface.co/Korabbit/llama-2-ko-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8304 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0601 | 0.0049 | 1 | 0.9626 | | 0.9189 | 0.0196 | 4 | 0.9603 | | 0.8927 | 0.0392 | 8 | 0.9340 | | 0.6374 | 0.0588 | 12 | 0.9022 | | 0.9588 | 0.0784 | 16 | 0.8680 | | 0.7324 | 0.0980 | 20 | 0.8457 | | 0.8785 | 0.1176 | 24 | 0.8345 | | 1.1476 | 0.1373 | 28 | 0.8304 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1