--- library_name: peft license: llama2 base_model: lmsys/vicuna-13b-v1.5 tags: - axolotl - generated_from_trainer model-index: - name: 140fd333-611e-4afa-9d89-3f564d82c895 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: lmsys/vicuna-13b-v1.5 bf16: true chat_template: llama3 datasets: - data_files: - 75c20978f8f08fb6_train_data.json ds_type: json format: custom path: /workspace/input_data/75c20978f8f08fb6_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso06/140fd333-611e-4afa-9d89-3f564d82c895 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/75c20978f8f08fb6_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f4a9f87a-6269-4745-8616-7641d347122c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f4a9f87a-6269-4745-8616-7641d347122c warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 140fd333-611e-4afa-9d89-3f564d82c895 This model is a fine-tuned version of [lmsys/vicuna-13b-v1.5](https://huggingface.co/lmsys/vicuna-13b-v1.5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3163 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4841 | 0.0039 | 1 | 0.5647 | | 0.5679 | 0.0195 | 5 | 0.5465 | | 0.4768 | 0.0390 | 10 | 0.4106 | | 0.3373 | 0.0585 | 15 | 0.3280 | | 0.3335 | 0.0780 | 20 | 0.3193 | | 0.366 | 0.0975 | 25 | 0.3163 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1