--- library_name: peft license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.6 tags: - axolotl - generated_from_trainer model-index: - name: 7ce94035-955b-453d-b78a-ada3f8fd2a49 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.6 bf16: true chat_template: llama3 datasets: - data_files: - 2ac94313153ea82a_train_data.json ds_type: json format: custom path: /workspace/input_data/2ac94313153ea82a_train_data.json type: field_instruction: prompt field_output: ground_truth_chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: false group_by_length: false hub_model_id: lesso10/7ce94035-955b-453d-b78a-ada3f8fd2a49 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 4 mlflow_experiment_name: /tmp/2ac94313153ea82a_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 49e0bcbe-2fbf-40b6-bc9c-0a572915f378 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 49e0bcbe-2fbf-40b6-bc9c-0a572915f378 warmup_steps: 5 weight_decay: 0.0 xformers_attention: true ```

# 7ce94035-955b-453d-b78a-ada3f8fd2a49 This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v0.6](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.6) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2548 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1428 | 0.0011 | 1 | 1.3529 | | 1.3911 | 0.0053 | 5 | 1.3340 | | 1.2726 | 0.0107 | 10 | 1.2759 | | 1.5086 | 0.0160 | 15 | 1.2642 | | 1.242 | 0.0213 | 20 | 1.2567 | | 1.2654 | 0.0267 | 25 | 1.2548 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1