--- library_name: peft license: bigscience-bloom-rail-1.0 base_model: bigscience/bloom-560m tags: - axolotl - generated_from_trainer model-index: - name: 39701725-c01f-46af-88e9-bdc51665c2aa results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: bigscience/bloom-560m bf16: true chat_template: llama3 datasets: - data_files: - 504da07977edec12_train_data.json ds_type: json format: custom path: /workspace/input_data/504da07977edec12_train_data.json type: field_input: context field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso14/39701725-c01f-46af-88e9-bdc51665c2aa hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/504da07977edec12_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_hf output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: df5a88a4-a3f8-4755-b3f3-71f6f822af6d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: df5a88a4-a3f8-4755-b3f3-71f6f822af6d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 39701725-c01f-46af-88e9-bdc51665c2aa This model is a fine-tuned version of [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7517 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 14.0814 | 0.0000 | 1 | 3.8606 | | 15.1606 | 0.0002 | 5 | 3.8564 | | 15.3765 | 0.0004 | 10 | 3.8234 | | 15.2172 | 0.0006 | 15 | 3.7768 | | 15.9209 | 0.0007 | 20 | 3.7553 | | 15.3883 | 0.0009 | 25 | 3.7517 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1