--- library_name: peft base_model: NousResearch/CodeLlama-13b-hf tags: - axolotl - generated_from_trainer model-index: - name: 96e6cfa0-d210-4b46-a662-13342681fda3 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/CodeLlama-13b-hf bf16: true chat_template: llama3 datasets: - data_files: - 6571c3e45df468e2_train_data.json ds_type: json format: custom path: /workspace/input_data/6571c3e45df468e2_train_data.json type: field_instruction: sentence1 field_output: sentence2 format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso14/96e6cfa0-d210-4b46-a662-13342681fda3 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/6571c3e45df468e2_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_hf output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 special_tokens: pad_token: strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b10c5d04-b029-4f1c-9817-c15cae349bfd wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b10c5d04-b029-4f1c-9817-c15cae349bfd warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 96e6cfa0-d210-4b46-a662-13342681fda3 This model is a fine-tuned version of [NousResearch/CodeLlama-13b-hf](https://huggingface.co/NousResearch/CodeLlama-13b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0447 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.5487 | 0.0010 | 1 | 2.5448 | | 8.3817 | 0.0050 | 5 | 2.5388 | | 10.6904 | 0.0100 | 10 | 2.4496 | | 10.015 | 0.0150 | 15 | 2.1829 | | 6.9152 | 0.0200 | 20 | 2.0623 | | 7.4628 | 0.0250 | 25 | 2.0447 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1