File size: 1,974 Bytes
48da722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: mit
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model_index:
- name: bert-large-pt-archive
results:
- task:
name: Token Classification
type: token-classification
metric:
name: Accuracy
type: accuracy
value: 0.9766762474673703
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-large-pt-archive
This model is a fine-tuned version of [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on an unkown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0869
- Precision: 0.9280
- Recall: 0.9541
- F1: 0.9409
- Accuracy: 0.9767
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0665 | 1.0 | 765 | 0.1020 | 0.8928 | 0.9566 | 0.9236 | 0.9696 |
| 0.0392 | 2.0 | 1530 | 0.0781 | 0.9229 | 0.9586 | 0.9404 | 0.9757 |
| 0.0201 | 3.0 | 2295 | 0.0809 | 0.9278 | 0.9550 | 0.9412 | 0.9767 |
| 0.0152 | 4.0 | 3060 | 0.0869 | 0.9280 | 0.9541 | 0.9409 | 0.9767 |
### Framework versions
- Transformers 4.10.0.dev0
- Pytorch 1.9.0+cu111
- Datasets 1.10.2
- Tokenizers 0.10.3
|