File size: 1,745 Bytes
9006822
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Proyecto-Transformers
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# Proyecto-Transformers

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.3322
- Train Accuracy: 0.5469
- Validation Loss: 2.5269
- Validation Accuracy: 0.2944
- Epoch: 4

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 1.5237     | 0.5237         | 2.2847          | 0.3024              | 0     |
| 1.4421     | 0.5378         | 2.3720          | 0.2823              | 1     |
| 1.3973     | 0.5439         | 2.4879          | 0.2742              | 2     |
| 1.3523     | 0.5610         | 2.4525          | 0.2944              | 3     |
| 1.3322     | 0.5469         | 2.5269          | 0.2944              | 4     |


### Framework versions

- Transformers 4.27.4
- TensorFlow 2.5.0
- Tokenizers 0.13.2