File size: 1,811 Bytes
54fa04b
 
 
 
 
 
 
 
 
 
 
 
90f5a69
54fa04b
 
 
 
 
90f5a69
54fa04b
 
 
90f5a69
 
2b3797c
90f5a69
 
54fa04b
 
 
 
 
 
 
 
673ad75
 
 
54fa04b
673ad75
90f5a69
673ad75
54fa04b
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: distilbert-truncated
  results: []
---


# distilbert-truncated

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the [20 Newsgroups dataset](http://qwone.com/~jason/20Newsgroups/).
It achieves the following results on the evaluation set:


## Training and evaluation data

The data was split into training and testing: model trained on 90% of the data, and had a testing data size of 10% of the original dataset.

## Training procedure

DistilBERT has a maximum input length of 512, so with this in mind the following was performed:

1. I used the `distilbert-base-uncased` pretrained model to initialize an `AutoTokenizer`.
2. Setting a maximum length of 256, each entry in the training, testing and validation data was truncated if it exceeded the limit and padded if it didn't reach the limit.

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1908, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32

### Training results

EPOCHS = 3
batches_per_epoch = 636
total_train_steps = 1908

Model accuracy 0.8337758779525757

Model loss 0.568471074104309

### Framework versions

- Transformers 4.28.0
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3