# How to use this model on Python You can use a Google Colab notebook, please ensure you install ``` !pip install -q bitsandbytes datasets accelerate loralib !pip install -q git+https://github.com/huggingface/peft.git git+https://github.com/huggingface/transformers.git ``` You can then copy and paste this into a cell, or use as a standalone Python script. ``` import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer from IPython.display import display, Markdown def make_inference(topic): batch = tokenizer(f"### INSTRUCTION\nBelow summary for a blog post, please write a social media post\ \n\n### Topic:\n{topic}\n### Social media post:\n", return_tensors='pt') with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_new_tokens=200) display(Markdown((tokenizer.decode(output_tokens[0], skip_special_tokens=True)))) if __name__=="__main__": # Set up user name and model name hf_username = "lgfunderburk" model_name = 'tech-social-media-posts' peft_model_id = f"{hf_username}/{model_name}" # Apply PETF configuration, setup model and autotokenizer config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=False, device_map='auto') tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id) # Summary to generate a social media post about topic = "The blog post demonstrates how to use JupySQL and DuckDB to query CSV files with SQL in a Jupyter notebook. \ It covers installation, setup, querying, and converting queries to DataFrame. \ Additionally, the post shows how to register SQLite user-defined functions (UDF), \ connect to a SQLite database with spaces, switch connections between databases, and connect to existing engines. \ It also provides tips for using JupySQL in Databricks, ignoring deprecation warnings, and hiding connection strings." # Generate social media post make_inference(topic) ```