File size: 3,497 Bytes
2c1d9e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b75fde8
 
2c1d9e9
b75fde8
2c1d9e9
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import spacy
import numpy as np
from transformers import Pipeline


class SRLPipeline(Pipeline):

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        spacy.prefer_gpu()

        if not spacy.util.is_package("pt_core_news_sm"):
            spacy.cli.download("pt_core_news_sm")

        self.nlp = spacy.load("pt_core_news_sm")

    def align_labels_with_tokens(self, tokenized_inputs, all_labels):
        results = []

        for i, labels in enumerate(all_labels):
            word_ids = tokenized_inputs.word_ids(batch_index=i)
            type_ids = tokenized_inputs[i].type_ids

            num_special_tokens = len(
                [type_id for type_id in type_ids if type_id != 0])

            if num_special_tokens > 0:
                word_ids = word_ids[:-num_special_tokens]

            new_labels = []
            current_word = None

            for word_id in word_ids:

                if word_id != current_word:
                    # Start of a new word!
                    current_word = word_id
                    label = -100 if word_id is None else labels[word_id]
                    new_labels.append(label)
                else:
                    new_labels.append(-100)

            results.append(new_labels)

        tokenized_inputs['labels'] = results

        return tokenized_inputs

    def _sanitize_parameters(self, **kwargs):
        preprocess_kwargs = {}

        if "verb" in kwargs:
            preprocess_kwargs["verb"] = kwargs["verb"]

        return preprocess_kwargs, {}, {}

    def preprocess(self, text):

        self.text = text

        doc = self.nlp(text.strip())

        self.label_names = self.model.config.id2label

        # Extract list with verbs from the text
        self.verbs = [token.text for token in doc if token.pos_ == "VERB"]

        results = []

        tokenized_input = [token.text for token in doc]
        raw_labels = [0] * len(tokenized_input)

        for verb in self.verbs:
            tokenized_results = self.tokenizer(
                tokenized_input, [verb], truncation=True,
                is_split_into_words=True,
                return_tensors="pt", max_length=self.model.config.max_position_embeddings)

            tokenized_results = self.align_labels_with_tokens(
                tokenized_inputs=tokenized_results, all_labels=[raw_labels])

            self.labels = tokenized_results["labels"]

            # Remove labels temporarily to avoid conflicts in the forward pass
            tokenized_results.pop("labels")

            results.append(tokenized_results)

        return results

    def _forward(self, batch_inputs):
        results = []

        for entry in batch_inputs:
            results.append(self.model(**entry))

        return results

    def postprocess(self, batch_outputs):
        outputs = []

        for i, entry in enumerate(batch_outputs):
            logits = entry.logits

            predictions = np.argmax(logits, axis=-1).squeeze().tolist()

            true_predictions = []

            for prediction, label in zip(predictions, self.labels[0]):
                if label != -100:
                    true_predictions.append(self.label_names[prediction])

            doc = self.nlp(self.text.strip())

            outputs.append({
                "tokens": [token.text for token in doc],
                "predictions": true_predictions,
                "verb": self.verbs[i]
            })

        return outputs