Delete srl_pipeline.py
Browse files- srl_pipeline.py +0 -242
srl_pipeline.py
DELETED
@@ -1,242 +0,0 @@
|
|
1 |
-
import logging
|
2 |
-
from typing import Any, Dict, List, Tuple
|
3 |
-
|
4 |
-
import spacy
|
5 |
-
import torch
|
6 |
-
from transformers import Pipeline
|
7 |
-
|
8 |
-
from decoder import Decoder
|
9 |
-
|
10 |
-
logger = logging.getLogger(__name__)
|
11 |
-
|
12 |
-
|
13 |
-
class SrlPipeline(Pipeline):
|
14 |
-
"""
|
15 |
-
A pipeline for Semantic Role Labeling (SRL) using transformers and spaCy models.
|
16 |
-
|
17 |
-
This pipeline tokenizes input sentences, finds verbs using POS tagging, and postprocesses
|
18 |
-
the model outputs using Viterbi decoding to provide human-readable results.
|
19 |
-
|
20 |
-
Attributes:
|
21 |
-
model ``str``: The name or identifier of the underlying transformer model.
|
22 |
-
tokenizer ``str``: The name or identifier of the tokenizer associated with the model.
|
23 |
-
framework ``str``: The framework used for the pipeline (e.g., PyTorch, TensorFlow).
|
24 |
-
task ``str``: The specific task of the pipeline.
|
25 |
-
verb_predictor: An instance of spaCy model used for predicting verbs in the input sentences.
|
26 |
-
Usage:
|
27 |
-
# Register the SrlPipeline in the pipeline registry
|
28 |
-
PIPELINE_REGISTRY.register_pipeline(
|
29 |
-
"srl",
|
30 |
-
pipeline_class=SrlPipeline,
|
31 |
-
model=SRLModel, # Assuming SRLModel is the model class used
|
32 |
-
default={"lang": "en"},
|
33 |
-
type="text",
|
34 |
-
)
|
35 |
-
|
36 |
-
# Load the model and tokenizer
|
37 |
-
model = AutoModel.from_pretrained("liaad/srl-en_roberta-large_hf", trust_remote_code=True)
|
38 |
-
tokenizer = AutoTokenizer.from_pretrained("liaad/srl-en_roberta-large_hf", trust_remote_code=True)
|
39 |
-
|
40 |
-
# Load the SRL pipeline
|
41 |
-
srl_pipeline = pipeline(
|
42 |
-
"srl",
|
43 |
-
model=model,
|
44 |
-
tokenizer=tokenizer,
|
45 |
-
framework="PyTorch", # Replace with actual framework used
|
46 |
-
task="semantic_role_labeling", # Replace with actual task name
|
47 |
-
lang="en" # Language specification
|
48 |
-
)
|
49 |
-
|
50 |
-
# Example text input
|
51 |
-
text = ["The cat jumps over the fence.", "She quickly eats the delicious cake."]
|
52 |
-
|
53 |
-
# Perform semantic role labeling
|
54 |
-
results = srl_pipeline(text)
|
55 |
-
"""
|
56 |
-
|
57 |
-
def __init__(self, model: str, tokenizer: str, framework: str, task: str, **kwargs):
|
58 |
-
"""
|
59 |
-
Initializes the Semantic Role Labeling pipeline.
|
60 |
-
|
61 |
-
Parameters:
|
62 |
-
- model ``str``: The model name or identifier.
|
63 |
-
- tokenizer ``str``: The tokenizer name or identifier.
|
64 |
-
- framework ``str``: The framework used.
|
65 |
-
- task ``str``: The specific task of the pipeline.
|
66 |
-
- **kwargs: Additional keyword arguments.
|
67 |
-
- lang ``str``, optional: Language specification ('en' for English or 'pt' for Portuguese, which is default).
|
68 |
-
"""
|
69 |
-
super().__init__(model, tokenizer=tokenizer)
|
70 |
-
if "lang" in kwargs and kwargs["lang"] == "en":
|
71 |
-
logger.info("Loading English verb predictor model...")
|
72 |
-
self.verb_predictor = spacy.load("en_core_web_trf")
|
73 |
-
else:
|
74 |
-
logger.info("Loading Portuguese verb predictor model...")
|
75 |
-
self.verb_predictor = spacy.load("pt_core_news_lg")
|
76 |
-
logger.info("Got verb prediction model\n")
|
77 |
-
|
78 |
-
def _sanitize_parameters(
|
79 |
-
self, **kwargs: Dict[str, Any]
|
80 |
-
) -> Tuple[Dict[str, Any], Dict[str, Any], Dict[str, Any]]:
|
81 |
-
"""
|
82 |
-
Sanitizes and organizes additional parameters.
|
83 |
-
|
84 |
-
Parameters:
|
85 |
-
- **kwargs: Additional keyword arguments.
|
86 |
-
|
87 |
-
Returns:
|
88 |
-
- ``Tuple[Dict[str, Any], Dict[str, Any], Dict[str, Any]]``: Three dictionaries of sanitized parameters for preprocess, _forward, and postprocess.
|
89 |
-
"""
|
90 |
-
return {}, {}, {}
|
91 |
-
|
92 |
-
def preprocess(self, sentence: str) -> List[Dict[str, Any]]:
|
93 |
-
"""
|
94 |
-
Preprocesses a sentence for semantic role labeling.
|
95 |
-
|
96 |
-
Parameters:
|
97 |
-
- sentence ``str``: The input sentence to be processed.
|
98 |
-
|
99 |
-
Returns:
|
100 |
-
- ``List[Dict[str, Any]]``: A list of dictionaries containing model inputs for each verb in the sentence.
|
101 |
-
"""
|
102 |
-
# Extract sentence verbs
|
103 |
-
doc = self.verb_predictor(sentence)
|
104 |
-
|
105 |
-
verbs = {token.text for token in doc if token.pos_ == "VERB"}
|
106 |
-
# If the sentence only contains auxiliary verbs, consider those as the
|
107 |
-
# main verbs
|
108 |
-
if not verbs:
|
109 |
-
verbs = {token.text for token in doc if token.pos_ == "AUX"}
|
110 |
-
|
111 |
-
# Tokenize sentence
|
112 |
-
tokens = self.tokenizer.encode_plus(
|
113 |
-
sentence,
|
114 |
-
truncation=True,
|
115 |
-
return_token_type_ids=False,
|
116 |
-
return_offsets_mapping=True,
|
117 |
-
)
|
118 |
-
tokens_lst = tokens.tokens()
|
119 |
-
offsets = tokens["offset_mapping"]
|
120 |
-
|
121 |
-
input_ids = torch.tensor([tokens["input_ids"]], dtype=torch.long)
|
122 |
-
attention_mask = torch.tensor([tokens["attention_mask"]], dtype=torch.long)
|
123 |
-
|
124 |
-
model_input = {
|
125 |
-
"input_ids": input_ids,
|
126 |
-
"attention_mask": attention_mask,
|
127 |
-
"token_type_ids": [],
|
128 |
-
"tokens": tokens_lst,
|
129 |
-
"verb": "",
|
130 |
-
}
|
131 |
-
|
132 |
-
model_inputs = [
|
133 |
-
{**model_input} for _ in verbs
|
134 |
-
] # Create a new dictionary for each verb
|
135 |
-
|
136 |
-
for i, verb in enumerate(verbs):
|
137 |
-
model_inputs[i]["verb"] = verb
|
138 |
-
token_type_ids = model_inputs[i]["token_type_ids"]
|
139 |
-
token_type_ids.append([])
|
140 |
-
curr_word_offsets: tuple[int, int] = None
|
141 |
-
|
142 |
-
for j in range(len(tokens_lst)):
|
143 |
-
curr_offsets = offsets[j]
|
144 |
-
curr_slice = sentence[curr_offsets[0] : curr_offsets[1]]
|
145 |
-
if not curr_slice:
|
146 |
-
token_type_ids[-1].append(0)
|
147 |
-
# Check if new token still belongs to same word
|
148 |
-
elif (
|
149 |
-
curr_word_offsets
|
150 |
-
and curr_offsets[0] >= curr_word_offsets[0]
|
151 |
-
and curr_offsets[1] <= curr_word_offsets[1]
|
152 |
-
):
|
153 |
-
# Extend previous token type
|
154 |
-
token_type_ids[-1].append(token_type_ids[-1][-1])
|
155 |
-
else:
|
156 |
-
curr_word_offsets = self._find_word(sentence, start=curr_offsets[0])
|
157 |
-
curr_word = sentence[curr_word_offsets[0] : curr_word_offsets[1]]
|
158 |
-
|
159 |
-
token_type_ids[-1].append(
|
160 |
-
int(curr_word != "" and curr_word == verb)
|
161 |
-
)
|
162 |
-
|
163 |
-
model_inputs[i]["token_type_ids"] = torch.tensor(
|
164 |
-
token_type_ids, dtype=torch.long
|
165 |
-
)
|
166 |
-
|
167 |
-
return model_inputs
|
168 |
-
|
169 |
-
def _forward(self, model_inputs: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
170 |
-
"""
|
171 |
-
Internal method to forward model inputs for prediction.
|
172 |
-
|
173 |
-
Parameters:
|
174 |
-
- model_inputs ``List[Dict[str, Any]]``: List of dictionaries containing model inputs.
|
175 |
-
|
176 |
-
Returns:
|
177 |
-
- ``List[Dict[str, Any]]``: List of dictionaries containing model outputs.
|
178 |
-
"""
|
179 |
-
outputs = []
|
180 |
-
for model_input in model_inputs:
|
181 |
-
output = self.model(
|
182 |
-
input_ids=model_input["input_ids"],
|
183 |
-
attention_mask=model_input["attention_mask"],
|
184 |
-
token_type_ids=model_input["token_type_ids"],
|
185 |
-
)
|
186 |
-
output["verb"] = model_input["verb"]
|
187 |
-
output["tokens"] = model_input["tokens"]
|
188 |
-
outputs.append(output)
|
189 |
-
return outputs
|
190 |
-
|
191 |
-
def postprocess(self, model_outputs: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
192 |
-
"""
|
193 |
-
Postprocesses model outputs to human-readable format.
|
194 |
-
|
195 |
-
Parameters:
|
196 |
-
- model_outputs ``List[Dict[str, Any]]``: List of dictionaries containing model outputs.
|
197 |
-
|
198 |
-
Returns:
|
199 |
-
- ``List[Dict[str, Any]]``: List of dictionaries containing processed results.
|
200 |
-
Each dictionary entry represents a verb with its associated labels and token-label pairs.
|
201 |
-
Example format: {verb: (labels, List[(token, label)])}
|
202 |
-
"""
|
203 |
-
result = []
|
204 |
-
id2label = {int(k): str(v) for k, v in self.model.config.id2label.items()}
|
205 |
-
evaluator = Decoder(id2label)
|
206 |
-
|
207 |
-
for model_output in model_outputs:
|
208 |
-
class_probabilities = model_output["class_probabilities"]
|
209 |
-
attention_mask = model_output["attention_mask"]
|
210 |
-
output_dict = evaluator.make_output_human_readable(
|
211 |
-
class_probabilities, attention_mask
|
212 |
-
)
|
213 |
-
# Here we always fetch the first list because in a pipeline every
|
214 |
-
# sentence is processed one at a time
|
215 |
-
wordpiece_label_ids = output_dict["wordpiece_label_ids"][0]
|
216 |
-
labels = list(map(lambda idx: id2label[idx], wordpiece_label_ids))
|
217 |
-
result.append(
|
218 |
-
{
|
219 |
-
model_output["verb"]: (
|
220 |
-
labels,
|
221 |
-
list(zip(model_output["tokens"], labels)),
|
222 |
-
)
|
223 |
-
}
|
224 |
-
)
|
225 |
-
return result
|
226 |
-
|
227 |
-
def _find_word(self, s: str, start: int = 0) -> Tuple[int, int]:
|
228 |
-
"""
|
229 |
-
Helper method to find the boundaries of a word in a string.
|
230 |
-
Assumes a non alphanumeric char represents the end of a word.
|
231 |
-
|
232 |
-
Parameters:
|
233 |
-
- s ``str``: The input string.
|
234 |
-
- start ``int``, optional: Starting index to start looking for the word. Defaults to 0.
|
235 |
-
|
236 |
-
Returns:
|
237 |
-
- ``Tuple[int, int]``: Start and end indices of the word.
|
238 |
-
"""
|
239 |
-
for i, char in enumerate(s[start:], start):
|
240 |
-
if not char.isalpha():
|
241 |
-
return start, i
|
242 |
-
return start, len(s)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|