File size: 11,206 Bytes
465d606 db6f79d 465d606 db6f79d 465d606 9c9c7b6 465d606 db6f79d 465d606 db6f79d 465d606 db6f79d 465d606 db6f79d 465d606 db6f79d 465d606 db6f79d 465d606 db6f79d 465d606 db6f79d 465d606 db6f79d 465d606 db6f79d 465d606 db6f79d 465d606 db6f79d 465d606 db6f79d 465d606 db6f79d 465d606 db6f79d 465d606 db6f79d a94b423 db6f79d a94b423 db6f79d a94b423 db6f79d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
---
language:
- am
- ar
- bn
- zh
- cs
- nl
- en
- fr
- de
- el
- ha
- he
- hi
- id
- it
- ja
- jv
- km
- ko
- lo
- ms
- mr
- fa
- pl
- pt
- ro
- ru
- es
- sw
- sv
- tl
- ta
- te
- th
- tr
- uk
- ur
- vi
license: apache-2.0
datasets:
- lightblue/reasoning-multilingual-R1-Llama-70B-train
tags:
- reasoning
---
# lightblue/DeepSeek-R1-Distill-Qwen-1.5B-Multilingual
<div style="width: 100%; height: 160px;
display: flex; align-items: center;
justify-content: center;
border: 8px solid black;
font-size: 120px; font-weight: bold;
text-align: center;
color: #438db8,
font-family: 'Helvetica Neue', sans-serif;">
<span style="color: #438db8;">R1</span>
<span style="color: blue;">m</span>
<span style="color: green;">u</span>
<span style="color: purple;">l</span>
<span style="color: yellow;">t</span>
<span style="color: pink;">i</span>
<span style="color: cyan;">l</span>
<span style="color: magenta;">i</span>
<span style="color: lime;">n</span>
<span style="color: teal;">g</span>
</div>
This is a Deepseek distill finetune trained on multilingual Chain-of-Thought (CoT).
When this model is prompted in a language, it will both think and respond in that language, unlike the original R1 which will often think in either Chinese or English.
This will make the outputs of these AIs more understandable and explainable to a wider audience.
Hopefully this will be useful to the AI community, particularly those developing for languages aside from English and Chinese.
This model is a multilingual fine-tuned version of [deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B).
Other fine-tuned versions of this model can be found in [our collection, here](https://huggingface.co/collections/lightblue/r1-multilingual-679c890166ac0a84e83e38fa).
This model was trained was trained for ~10 minutes on the 8 x L20 instance ([ecs.gn8is-8x.32xlarge](https://www.alibabacloud.com/help/en/ecs/user-guide/gpu-accelerated-compute-optimized-and-vgpu-accelerated-instance-families-1)) on [Alibaba Cloud](https://www.alibabacloud.com/).
# How to use
When using these models, we recommend using a sampling temperature of between 0.5-0.7, [as per the original distilled R1 models](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B#usage-recommendations).
Additionally, we have observed that the model sometimes tends to repeat for more niche languages, so we also recommend setting `repetition_penalty` to 1.1, or higher if the model repeats itself when processing your prompts.
We include scripts to use this model in vLLM:
<ul>
<li><b>vLLM</b>
Install [vLLM](https://github.com/vllm-project/vllm/) using `pip install vllm`.
<details open>
<summary>Show vLLM code</summary>
```python
from vllm import LLM, SamplingParams
llm = LLM(
model="lightblue/DeepSeek-R1-Distill-Qwen-7B-Multilingual",
max_model_len=8_000
)
sampling_params = SamplingParams(
temperature=0.5,
max_tokens=8_000
)
prompts = [
"""学校には1クラスにつき20人の生徒がおり、クラスは合計3つあります。
学校全体では男子と女子がそれぞれ50%ずついます。
1つ目のクラスには女子が15人、2つ目のクラスには女子が12人います。
3つ目のクラスには何人の男子がいますか?"""
]
conversations = [
[{"role": "user", "content": x}] for x in prompts
]
outputs = llm.chat(conversations, sampling_params=sampling_params)
for output in outputs:
print(output.outputs[0].text)
# <think>
# まず、学校の総生徒数を算出します。各クラスに20人の生徒があり、クラスは3つあるため、総生徒数は60人です。
# 次に、学校全体で男子と女子は同じ人数で分布しています。したがって、男子と女子各有30人。
...
# したがって、3つ目のクラスの男子数は20 - 3 = 17人です。
# </think>
# **解答:**
# 学校の総生徒数を算出します。
...
# **最終的な答え:**
# \[
# \boxed{17}
# \]
```
</details></li>
</ul>
# Evaluation
Through some quick evaluation of our own, we found this model can produce much correctly formatted and accurate results for higher resource languages, such as Japanese, English, German, than lower resource languages, such as Amharic or Lao.
We did a **very** quick evaluation of 5 questions with each dataset (written by me and translated by GPT4o Mini) on the [lightblue/DeepSeek-R1-Distill-Qwen-7B-Multilingual](https://huggingface.co/lightblue/DeepSeek-R1-Distill-Qwen-7B-Multilingual) model, and we find that the model is able to fairly reliably output the correct answers and in the correct language for a large variety of languages:
For this evaluation, a score of >=0.8 is good, as one of the questions was very hard. The language detection was done using [pycld2](https://pypi.org/project/pycld2/) so errors may occur with the correct language being mistaken for another one.
| language | Has a correct think statement | Has the think statement in the correct language | Is the response in the correct language | Is the answer correct |
|:----------------|------------:|------------------------:|----------------------:|-------------:|
| Amharic | 0.2 | 0 | 0 | 0 |
| Arabic | 1 | 0.8 | 0.8 | 0.6 |
| Bengali | 1 | 1 | 1 | 0.2 |
| Chinese | 1 | 1 | 1 | 0.8 |
| Czech | 1 | 1 | 1 | 0.8 |
| Dutch | 1 | 1 | 1 | 0.8 |
| English | 1 | 1 | 1 | 0.8 |
| French | 1 | 1 | 1 | 0.8 |
| German | 1 | 1 | 1 | 0.8 |
| Greek | 1 | 1 | 1 | 0.6 |
| Hausa | 0.4 | 0 | 0 | 0 |
| Hebrew | 1 | 0.8 | 1 | 0.6 |
| Hindi | 1 | 1 | 1 | 0.8 |
| Indonesian | 1 | 1 | 1 | 0.8 |
| Italian | 1 | 1 | 1 | 0.8 |
| Japanese | 1 | 1 | 0.8 | 0.6 |
| Javanese | 0.8 | 0.2 | 0.2 | 0.6 |
| Khmer | 0.6 | 0.6 | 0.6 | 0 |
| Korean | 1 | 1 | 1 | 1 |
| Lao | 0.4 | 0.4 | 0.4 | 0 |
| Malay | 1 | 0.4 | 0.4 | 0.8 |
| Marathi | 0.6 | 0.4 | 0.6 | 0.2 |
| Persian (Farsi) | 0.6 | None* | None* | 0.2 |
| Polish | 1 | 1 | 1 | 0.6 |
| Portuguese | 1 | 1 | 1 | 0.8 |
| Romanian | 1 | 1 | 1 | 0.8 |
| Russian | 1 | 1 | 1 | 0.8 |
| Spanish | 1 | 1 | 1 | 0.8 |
| Swahili | 0.4 | 0.4 | 0.4 | 0 |
| Swedish | 1 | 1 | 1 | 0.8 |
| Tagalog | 1 | 1 | 1 | 0.8 |
| Tamil | 0.8 | 0.8 | 0.8 | 0.2 |
| Telugu | 0.8 | 0.6 | 0.8 | 0 |
| Thai | 1 | 1 | 1 | 0.8 |
| Turkish | 1 | 1 | 1 | 0.8 |
| Ukrainian | 1 | 1 | 1 | 0.8 |
| Urdu | 1 | 1 | 1 | 0.6 |
| Vietnamese | 1 | 1 | 1 | 1 |
* There was an error with Farsi detection (my own fault) so we do not report Farsi scores.
The evaluation code for this can be found [here](https://drive.google.com/file/d/1P33GpqvKmHoZUsWqqBPXHTToN2W7MDRG/view?usp=sharing).
# Training code
```yaml
### model
model_name_or_path: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
### method
stage: sft
do_train: true
finetuning_type: full
deepspeed: /root/LLaMA-Factory/examples/deepspeed/ds_z2_config.json
### dataset
dataset: reasoning-multilingual-R1-Llama-70B-train
template: qwen
cutoff_len: 4500
overwrite_cache: true
preprocessing_num_workers: 16
packing: true
### output
output_dir: /root/train_outputs/DeepSeek-R1-Distill-Qwen-1.5B/reasoning-multilingual-R1-Llama-70B-train
logging_steps: 1
save_steps: 0.99999
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 1
learning_rate: 1.0e-5
num_train_epochs: 1.0
lr_scheduler_type: cosine
warmup_ratio: 0.01
bf16: true
ddp_timeout: 180000000
### eval
val_size: 0.01
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 0.1
```
```bash
echo '{
"reasoning-multilingual-R1-Llama-70B-train": {
"hf_hub_url": "lightblue/reasoning-multilingual-R1-Llama-70B-train",
"formatting": "sharegpt"
}
}' > /root/LLaMA-Factory/data/dataset_info.json
# # 1.5B Llama
cd /root/LLaMA-Factory && llamafactory-cli train /root/reasoning_multilingual_train_1.5B.yaml
rm -r /root/train_outputs/DeepSeek-R1-Distill-Qwen-1.5B/reasoning-multilingual-R1-Llama-70B-train/checkpoint*
huggingface-cli upload lightblue/DeepSeek-R1-Distill-Qwen-1.5B-Multilingual /root/train_outputs/DeepSeek-R1-Distill-Qwen-1.5B/reasoning-multilingual-R1-Llama-70B-train
```
# License
We share this model with the Apache 2.0 license.
# Developed by
<a href="https://www.lightblue-tech.com">
<img src="https://www.lightblue-tech.com/wp-content/uploads/2023/08/color_%E6%A8%AA%E5%9E%8B-1536x469.png" alt="Lightblue technology logo" width="400"/>
</a>
This model was trained by Peter Devine ([ptrdvn](https://huggingface.co/ptrdvn)) for Lightblue |