Safetensors
qwen2
reasoning
ptrdvn commited on
Commit
baec9b6
·
verified ·
1 Parent(s): a18b08a

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,270 +1,73 @@
1
  ---
2
- language:
3
- - am
4
- - ar
5
- - bn
6
- - zh
7
- - cs
8
- - nl
9
- - en
10
- - fr
11
- - de
12
- - el
13
- - ha
14
- - he
15
- - hi
16
- - id
17
- - it
18
- - ja
19
- - jv
20
- - km
21
- - ko
22
- - lo
23
- - ms
24
- - mr
25
- - fa
26
- - pl
27
- - pt
28
- - ro
29
- - ru
30
- - es
31
- - sw
32
- - sv
33
- - tl
34
- - ta
35
- - te
36
- - th
37
- - tr
38
- - uk
39
- - ur
40
- - vi
41
- license: apache-2.0
42
- datasets:
43
- - lightblue/reasoning-multilingual-R1-Llama-70B-train
44
  tags:
45
- - reasoning
 
 
 
 
 
46
  ---
47
 
48
- # lightblue/DeepSeek-R1-Distill-Qwen-7B-Multilingual
 
49
 
50
- <div style="width: 100%; height: 160px;
51
- display: flex; align-items: center;
52
- justify-content: center;
53
- border: 8px solid black;
54
- font-size: 120px; font-weight: bold;
55
- text-align: center;
56
- color: #438db8,
57
- font-family: 'Helvetica Neue', sans-serif;">
58
- <span style="color: #438db8;">R1</span>
59
- &nbsp;
60
- <span style="color: blue;">m</span>
61
- <span style="color: green;">u</span>
62
- <span style="color: purple;">l</span>
63
- <span style="color: yellow;">t</span>
64
- <span style="color: pink;">i</span>
65
- <span style="color: cyan;">l</span>
66
- <span style="color: magenta;">i</span>
67
- <span style="color: lime;">n</span>
68
- <span style="color: teal;">g</span>
69
- </div>
70
 
71
- This is a Deepseek distill finetune trained on multilingual Chain-of-Thought (CoT).
72
- When this model is prompted in a language, it will both think and respond in that language, unlike the original R1 which will often think in either Chinese or English.
73
- This will make the outputs of these AIs more understandable and explainable to a wider audience.
74
- Hopefully this will be useful to the AI community, particularly those developing for languages aside from English and Chinese.
75
 
76
- This model is a multilingual fine-tuned version of [deepseek-ai/DeepSeek-R1-Distill-Qwen-14B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B).
77
 
78
- Other fine-tuned versions of this model can be found in [our collection, here](https://huggingface.co/collections/lightblue/r1-multilingual-679c890166ac0a84e83e38fa).
79
 
80
- This model was trained was trained for ~10 minutes on the 8 x L20 instance ([ecs.gn8is-8x.32xlarge](https://www.alibabacloud.com/help/en/ecs/user-guide/gpu-accelerated-compute-optimized-and-vgpu-accelerated-instance-families-1)) on [Alibaba Cloud](https://www.alibabacloud.com/).
81
 
82
- # How to use
83
 
84
- When using these models, we recommend using a sampling temperature of between 0.5-0.7, [as per the original distilled R1 models](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B#usage-recommendations).
85
 
86
- Additionally, we have observed that the model sometimes tends to repeat for more niche languages, so we also recommend setting `repetition_penalty` to 1.1, or higher if the model repeats itself when processing your prompts.
87
 
88
- We include scripts to use this model in vLLM:
89
 
90
- <ul>
91
- <li><b>vLLM</b>
92
 
93
- Install [vLLM](https://github.com/vllm-project/vllm/) using `pip install vllm`.
 
 
 
 
 
 
 
 
 
 
 
 
94
 
95
- <details open>
96
- <summary>Show vLLM code</summary>
97
-
98
- ```python
99
- from vllm import LLM, SamplingParams
100
 
101
- llm = LLM(
102
- model="lightblue/DeepSeek-R1-Distill-Qwen-7B-Multilingual",
103
- max_model_len=8_000
104
- )
 
 
 
 
 
 
 
105
 
106
- sampling_params = SamplingParams(
107
- temperature=0.5,
108
- max_tokens=8_000
109
- )
110
 
111
- prompts = [
112
- """学校には1クラスにつき20人の生徒がおり、クラスは合計3つあります。
113
- 学校全体では男子と女子がそれぞれ50%ずついます。
114
- 1つ目のクラスには女子が15人、2つ目のクラスには女子が12人います。
115
- 3つ目のクラスには何人の男子がいますか?"""
116
- ]
117
 
118
- conversations = [
119
- [{"role": "user", "content": x}] for x in prompts
120
- ]
121
-
122
- outputs = llm.chat(conversations, sampling_params=sampling_params)
123
-
124
- for output in outputs:
125
- print(output.outputs[0].text)
126
-
127
- # <think>
128
- # まず、学校の総生徒数を算出します。各クラスに20人の生徒があり、クラスは3つあるため、総生徒数は60人です。
129
-
130
- # 次に、学校全体で男子と女子は同じ人数で分布しています。したがって、男子と女子各有30人。
131
- ...
132
- # したがって、3つ目のクラスの男子数は20 - 3 = 17人です。
133
- # </think>
134
-
135
- # **解答:**
136
-
137
- # 学校の総生徒数を算出します。
138
- ...
139
- # **最終的な答え:**
140
- # \[
141
- # \boxed{17}
142
- # \]
143
- ```
144
-
145
- </details></li>
146
- </ul>
147
-
148
- # Evaluation
149
-
150
- Through some quick evaluation of our own, we found this model can produce much correctly formatted and accurate results for higher resource languages, such as Japanese, English, German, than lower resource languages, such as Amharic or Lao.
151
-
152
- We did a **very** quick evaluation of 5 questions with each dataset (written by me and translated by GPT4o Mini) on the [lightblue/DeepSeek-R1-Distill-Qwen-7B-Multilingual](https://huggingface.co/lightblue/DeepSeek-R1-Distill-Qwen-7B-Multilingual) model, and we find that the model is able to fairly reliably output the correct answers and in the correct language for a large variety of languages:
153
-
154
- For this evaluation, a score of >=0.8 is good, as one of the questions was very hard. The language detection was done using [pycld2](https://pypi.org/project/pycld2/) so errors may occur with the correct language being mistaken for another one.
155
-
156
- | language | Has a correct think statement | Has the think statement in the correct language | Is the response in the correct language | Is the answer correct |
157
- |:----------------|------------:|------------------------:|----------------------:|-------------:|
158
- | Amharic | 0.2 | 0 | 0 | 0 |
159
- | Arabic | 1 | 0.8 | 0.8 | 0.6 |
160
- | Bengali | 1 | 1 | 1 | 0.2 |
161
- | Chinese | 1 | 1 | 1 | 0.8 |
162
- | Czech | 1 | 1 | 1 | 0.8 |
163
- | Dutch | 1 | 1 | 1 | 0.8 |
164
- | English | 1 | 1 | 1 | 0.8 |
165
- | French | 1 | 1 | 1 | 0.8 |
166
- | German | 1 | 1 | 1 | 0.8 |
167
- | Greek | 1 | 1 | 1 | 0.6 |
168
- | Hausa | 0.4 | 0 | 0 | 0 |
169
- | Hebrew | 1 | 0.8 | 1 | 0.6 |
170
- | Hindi | 1 | 1 | 1 | 0.8 |
171
- | Indonesian | 1 | 1 | 1 | 0.8 |
172
- | Italian | 1 | 1 | 1 | 0.8 |
173
- | Japanese | 1 | 1 | 0.8 | 0.6 |
174
- | Javanese | 0.8 | 0.2 | 0.2 | 0.6 |
175
- | Khmer | 0.6 | 0.6 | 0.6 | 0 |
176
- | Korean | 1 | 1 | 1 | 1 |
177
- | Lao | 0.4 | 0.4 | 0.4 | 0 |
178
- | Malay | 1 | 0.4 | 0.4 | 0.8 |
179
- | Marathi | 0.6 | 0.4 | 0.6 | 0.2 |
180
- | Persian (Farsi) | 0.6 | None* | None* | 0.2 |
181
- | Polish | 1 | 1 | 1 | 0.6 |
182
- | Portuguese | 1 | 1 | 1 | 0.8 |
183
- | Romanian | 1 | 1 | 1 | 0.8 |
184
- | Russian | 1 | 1 | 1 | 0.8 |
185
- | Spanish | 1 | 1 | 1 | 0.8 |
186
- | Swahili | 0.4 | 0.4 | 0.4 | 0 |
187
- | Swedish | 1 | 1 | 1 | 0.8 |
188
- | Tagalog | 1 | 1 | 1 | 0.8 |
189
- | Tamil | 0.8 | 0.8 | 0.8 | 0.2 |
190
- | Telugu | 0.8 | 0.6 | 0.8 | 0 |
191
- | Thai | 1 | 1 | 1 | 0.8 |
192
- | Turkish | 1 | 1 | 1 | 0.8 |
193
- | Ukrainian | 1 | 1 | 1 | 0.8 |
194
- | Urdu | 1 | 1 | 1 | 0.6 |
195
- | Vietnamese | 1 | 1 | 1 | 1 |
196
-
197
- * There was an error with Farsi detection (my own fault) so we do not report Farsi scores.
198
-
199
- The evaluation code for this can be found [here](https://drive.google.com/file/d/1P33GpqvKmHoZUsWqqBPXHTToN2W7MDRG/view?usp=sharing).
200
-
201
- # Training code
202
-
203
- ```yaml
204
- ### model
205
- model_name_or_path: deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
206
-
207
- ### method
208
- stage: sft
209
- do_train: true
210
- finetuning_type: full
211
- deepspeed: /root/LLaMA-Factory/examples/deepspeed/ds_z2_config.json
212
-
213
- ### dataset
214
- dataset: reasoning-multilingual-R1-Llama-70B-train
215
- template: qwen
216
- cutoff_len: 4500
217
- overwrite_cache: true
218
- preprocessing_num_workers: 16
219
- packing: true
220
-
221
- ### output
222
- output_dir: /root/train_outputs/DeepSeek-R1-Distill-Qwen-7B/reasoning-multilingual-R1-Llama-70B-train
223
- logging_steps: 1
224
- save_steps: 0.99999
225
- plot_loss: true
226
- overwrite_output_dir: true
227
-
228
- ### train
229
- per_device_train_batch_size: 1
230
- gradient_accumulation_steps: 1
231
- learning_rate: 1.0e-5
232
- num_train_epochs: 1.0
233
- lr_scheduler_type: cosine
234
- warmup_ratio: 0.01
235
- bf16: true
236
- ddp_timeout: 180000000
237
-
238
- ### eval
239
- val_size: 0.01
240
- per_device_eval_batch_size: 1
241
- eval_strategy: steps
242
- eval_steps: 0.1
243
- ```
244
-
245
- ```bash
246
- echo '{
247
- "reasoning-multilingual-R1-Llama-70B-train": {
248
- "hf_hub_url": "lightblue/reasoning-multilingual-R1-Llama-70B-train",
249
- "formatting": "sharegpt"
250
- }
251
- }' > /root/LLaMA-Factory/data/dataset_info.json
252
-
253
- # 7B Qwen
254
- cd /root/LLaMA-Factory && llamafactory-cli train /root/reasoning_multilingual_train_7B.yaml
255
- rm -r /root/train_outputs/DeepSeek-R1-Distill-Qwen-7B/reasoning-multilingual-R1-Llama-70B-train/checkpoint*
256
- huggingface-cli upload lightblue/DeepSeek-R1-Distill-Qwen-7B-Multilingual /root/train_outputs/DeepSeek-R1-Distill-Qwen-7B/reasoning-multilingual-R1-Llama-70B-train
257
-
258
- ```
259
-
260
- # License
261
-
262
- We share this model with the Apache 2.0 license.
263
-
264
- # Developed by
265
-
266
- <a href="https://www.lightblue-tech.com">
267
- <img src="https://www.lightblue-tech.com/wp-content/uploads/2023/08/color_%E6%A8%AA%E5%9E%8B-1536x469.png" alt="Lightblue technology logo" width="400"/>
268
- </a>
269
-
270
- This model was trained by Peter Devine ([ptrdvn](https://huggingface.co/ptrdvn)) for Lightblue
 
1
  ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  tags:
6
+ - llama-factory
7
+ - full
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: reasoning-multilingual-R1-Llama-70B-train
11
+ results: []
12
  ---
13
 
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
 
17
+ # reasoning-multilingual-R1-Llama-70B-train
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
+ This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-Distill-Qwen-14B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B) on the reasoning-multilingual-R1-Llama-70B-train dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.4441
 
22
 
23
+ ## Model description
24
 
25
+ More information needed
26
 
27
+ ## Intended uses & limitations
28
 
29
+ More information needed
30
 
31
+ ## Training and evaluation data
32
 
33
+ More information needed
34
 
35
+ ## Training procedure
36
 
37
+ ### Training hyperparameters
 
38
 
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 1e-05
41
+ - train_batch_size: 1
42
+ - eval_batch_size: 1
43
+ - seed: 42
44
+ - distributed_type: multi-GPU
45
+ - num_devices: 8
46
+ - total_train_batch_size: 8
47
+ - total_eval_batch_size: 8
48
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
49
+ - lr_scheduler_type: cosine
50
+ - lr_scheduler_warmup_ratio: 0.01
51
+ - num_epochs: 1.0
52
 
53
+ ### Training results
 
 
 
 
54
 
55
+ | Training Loss | Epoch | Step | Validation Loss |
56
+ |:-------------:|:------:|:----:|:---------------:|
57
+ | 0.4962 | 0.1019 | 11 | 0.5000 |
58
+ | 0.5313 | 0.2037 | 22 | 0.4791 |
59
+ | 0.4692 | 0.3056 | 33 | 0.4685 |
60
+ | 0.3876 | 0.4074 | 44 | 0.4595 |
61
+ | 0.4768 | 0.5093 | 55 | 0.4542 |
62
+ | 0.4985 | 0.6111 | 66 | 0.4496 |
63
+ | 0.4687 | 0.7130 | 77 | 0.4465 |
64
+ | 0.4484 | 0.8148 | 88 | 0.4449 |
65
+ | 0.4809 | 0.9167 | 99 | 0.4442 |
66
 
 
 
 
 
67
 
68
+ ### Framework versions
 
 
 
 
 
69
 
70
+ - Transformers 4.48.1
71
+ - Pytorch 2.5.1+cu124
72
+ - Datasets 3.1.0
73
+ - Tokenizers 0.21.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
all_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "eval_loss": 0.444090336561203,
4
+ "eval_runtime": 7.0965,
5
+ "eval_samples_per_second": 1.268,
6
+ "eval_steps_per_second": 0.282,
7
+ "total_flos": 17851226259456.0,
8
+ "train_loss": 0.46821982275556634,
9
+ "train_runtime": 1249.8096,
10
+ "train_samples_per_second": 0.69,
11
+ "train_steps_per_second": 0.086
12
+ }
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 5120,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 13824,
13
+ "max_position_embeddings": 131072,
14
+ "max_window_layers": 48,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 40,
17
+ "num_hidden_layers": 48,
18
+ "num_key_value_heads": 8,
19
+ "rms_norm_eps": 1e-05,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.48.1",
26
+ "use_cache": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 152064
29
+ }
eval_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "eval_loss": 0.444090336561203,
4
+ "eval_runtime": 7.0965,
5
+ "eval_samples_per_second": 1.268,
6
+ "eval_steps_per_second": 0.282
7
+ }
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 151646,
4
+ "do_sample": true,
5
+ "eos_token_id": 151643,
6
+ "temperature": 0.6,
7
+ "top_p": 0.95,
8
+ "transformers_version": "4.48.1"
9
+ }
model-00001-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4f31f8877c02b6b9caf33fd7c9abf1f729ce96f7a616f191b1a80e5a1b064ca
3
+ size 4986211280
model-00002-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ec30aac47515ce6acc0ea5acc9169523b8068cc5d752761ce7f7c7b1c32d988
3
+ size 4954847344
model-00003-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd6cb1be327f257531db935262a32ffe1d99bb37c42f6ab25e297fa4fef85f5f
3
+ size 4954847392
model-00004-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6662d6cff9fc0f583c84a05b8a42aef420e717a7273824cdac2be24b62ac33e
3
+ size 4954847392
model-00005-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc5e2a0d2855e0066164fde079b7c42e5216c198c84095af739e7da33b4ab36a
3
+ size 4954847392
model-00006-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ac3d4534506b0566250063309be8ea205b1d5dd988a9d51d9d872028bf93d3a
3
+ size 4734533160
model.safetensors.index.json ADDED
@@ -0,0 +1,586 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 29540067328
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00006-of-00006.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00006.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00006.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00006.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00006.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00006.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00006.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00004-of-00006.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00006.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00004-of-00006.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00006.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00004-of-00006.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00005-of-00006.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
368
+ "model.layers.36.input_layernorm.weight": "model-00005-of-00006.safetensors",
369
+ "model.layers.36.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
370
+ "model.layers.36.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
371
+ "model.layers.36.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
372
+ "model.layers.36.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
373
+ "model.layers.36.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
374
+ "model.layers.36.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
375
+ "model.layers.36.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
376
+ "model.layers.36.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
377
+ "model.layers.36.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
378
+ "model.layers.36.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
379
+ "model.layers.36.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
380
+ "model.layers.37.input_layernorm.weight": "model-00005-of-00006.safetensors",
381
+ "model.layers.37.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
382
+ "model.layers.37.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
383
+ "model.layers.37.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
384
+ "model.layers.37.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
385
+ "model.layers.37.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
386
+ "model.layers.37.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
387
+ "model.layers.37.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
388
+ "model.layers.37.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
389
+ "model.layers.37.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
390
+ "model.layers.37.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
391
+ "model.layers.37.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
392
+ "model.layers.38.input_layernorm.weight": "model-00005-of-00006.safetensors",
393
+ "model.layers.38.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
394
+ "model.layers.38.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
395
+ "model.layers.38.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
396
+ "model.layers.38.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
397
+ "model.layers.38.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
398
+ "model.layers.38.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
399
+ "model.layers.38.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
400
+ "model.layers.38.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
401
+ "model.layers.38.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
402
+ "model.layers.38.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
403
+ "model.layers.38.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
404
+ "model.layers.39.input_layernorm.weight": "model-00005-of-00006.safetensors",
405
+ "model.layers.39.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
406
+ "model.layers.39.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
407
+ "model.layers.39.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
408
+ "model.layers.39.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
409
+ "model.layers.39.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
410
+ "model.layers.39.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
411
+ "model.layers.39.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
412
+ "model.layers.39.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
413
+ "model.layers.39.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
414
+ "model.layers.39.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
415
+ "model.layers.39.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
416
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
417
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
418
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
419
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
420
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
421
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
422
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
423
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
424
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
425
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
426
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
427
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
428
+ "model.layers.40.input_layernorm.weight": "model-00005-of-00006.safetensors",
429
+ "model.layers.40.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
430
+ "model.layers.40.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
431
+ "model.layers.40.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
432
+ "model.layers.40.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
433
+ "model.layers.40.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
434
+ "model.layers.40.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
435
+ "model.layers.40.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
436
+ "model.layers.40.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
437
+ "model.layers.40.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
438
+ "model.layers.40.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
439
+ "model.layers.40.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
440
+ "model.layers.41.input_layernorm.weight": "model-00005-of-00006.safetensors",
441
+ "model.layers.41.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
442
+ "model.layers.41.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
443
+ "model.layers.41.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
444
+ "model.layers.41.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
445
+ "model.layers.41.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
446
+ "model.layers.41.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
447
+ "model.layers.41.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
448
+ "model.layers.41.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
449
+ "model.layers.41.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
450
+ "model.layers.41.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
451
+ "model.layers.41.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
452
+ "model.layers.42.input_layernorm.weight": "model-00006-of-00006.safetensors",
453
+ "model.layers.42.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
454
+ "model.layers.42.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
455
+ "model.layers.42.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
456
+ "model.layers.42.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
457
+ "model.layers.42.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
458
+ "model.layers.42.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
459
+ "model.layers.42.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
460
+ "model.layers.42.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
461
+ "model.layers.42.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
462
+ "model.layers.42.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
463
+ "model.layers.42.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
464
+ "model.layers.43.input_layernorm.weight": "model-00006-of-00006.safetensors",
465
+ "model.layers.43.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
466
+ "model.layers.43.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
467
+ "model.layers.43.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
468
+ "model.layers.43.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
469
+ "model.layers.43.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
470
+ "model.layers.43.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
471
+ "model.layers.43.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
472
+ "model.layers.43.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
473
+ "model.layers.43.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
474
+ "model.layers.43.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
475
+ "model.layers.43.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
476
+ "model.layers.44.input_layernorm.weight": "model-00006-of-00006.safetensors",
477
+ "model.layers.44.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
478
+ "model.layers.44.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
479
+ "model.layers.44.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
480
+ "model.layers.44.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
481
+ "model.layers.44.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
482
+ "model.layers.44.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
483
+ "model.layers.44.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
484
+ "model.layers.44.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
485
+ "model.layers.44.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
486
+ "model.layers.44.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
487
+ "model.layers.44.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
488
+ "model.layers.45.input_layernorm.weight": "model-00006-of-00006.safetensors",
489
+ "model.layers.45.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
490
+ "model.layers.45.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
491
+ "model.layers.45.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
492
+ "model.layers.45.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
493
+ "model.layers.45.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
494
+ "model.layers.45.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
495
+ "model.layers.45.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
496
+ "model.layers.45.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
497
+ "model.layers.45.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
498
+ "model.layers.45.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
499
+ "model.layers.45.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
500
+ "model.layers.46.input_layernorm.weight": "model-00006-of-00006.safetensors",
501
+ "model.layers.46.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
502
+ "model.layers.46.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
503
+ "model.layers.46.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
504
+ "model.layers.46.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
505
+ "model.layers.46.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
506
+ "model.layers.46.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
507
+ "model.layers.46.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
508
+ "model.layers.46.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
509
+ "model.layers.46.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
510
+ "model.layers.46.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
511
+ "model.layers.46.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
512
+ "model.layers.47.input_layernorm.weight": "model-00006-of-00006.safetensors",
513
+ "model.layers.47.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
514
+ "model.layers.47.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
515
+ "model.layers.47.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
516
+ "model.layers.47.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
517
+ "model.layers.47.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
518
+ "model.layers.47.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
519
+ "model.layers.47.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
520
+ "model.layers.47.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
521
+ "model.layers.47.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
522
+ "model.layers.47.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
523
+ "model.layers.47.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
524
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00006.safetensors",
525
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
526
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
527
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
528
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
529
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
530
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
531
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
532
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
533
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
534
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
535
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
536
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00006.safetensors",
537
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
538
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
539
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
540
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
541
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
542
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
543
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
544
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
545
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
546
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
547
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
548
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
549
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
550
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
551
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
552
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
553
+ "model.layers.7.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
554
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
555
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
556
+ "model.layers.7.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
557
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
558
+ "model.layers.7.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
559
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
560
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
561
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
562
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
563
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
564
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
565
+ "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
566
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
567
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
568
+ "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
569
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
570
+ "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
571
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
572
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
573
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
574
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
575
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
576
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
577
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
578
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
579
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
580
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
581
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
582
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
583
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
584
+ "model.norm.weight": "model-00006-of-00006.safetensors"
585
+ }
586
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<|im_end|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ }
10
+ ],
11
+ "bos_token": {
12
+ "content": "<|begin▁of▁sentence|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "eos_token": {
19
+ "content": "<|end▁of▁sentence|>",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "pad_token": {
26
+ "content": "<|end▁of▁sentence|>",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false
31
+ }
32
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02643f00207dfc5ed248992486bde04314c21dca556bf65ce520690962b8db63
3
+ size 11422965
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "151643": {
7
+ "content": "<|end▁of▁sentence|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "151644": {
15
+ "content": "<|User|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": false
21
+ },
22
+ "151645": {
23
+ "content": "<|Assistant|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "151646": {
31
+ "content": "<|begin▁of▁sentence|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "151647": {
39
+ "content": "<|EOT|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "151648": {
47
+ "content": "<think>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "151649": {
55
+ "content": "</think>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "151650": {
63
+ "content": "<|quad_start|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "151651": {
71
+ "content": "<|quad_end|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "151652": {
79
+ "content": "<|vision_start|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "151653": {
87
+ "content": "<|vision_end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "151654": {
95
+ "content": "<|vision_pad|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "151655": {
103
+ "content": "<|image_pad|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "151656": {
111
+ "content": "<|video_pad|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "151657": {
119
+ "content": "<tool_call>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "151658": {
127
+ "content": "</tool_call>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "151659": {
135
+ "content": "<|fim_prefix|>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "151660": {
143
+ "content": "<|fim_middle|>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "151661": {
151
+ "content": "<|fim_suffix|>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "151662": {
159
+ "content": "<|fim_pad|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "151663": {
167
+ "content": "<|repo_name|>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "151664": {
175
+ "content": "<|file_sep|>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ },
182
+ "151665": {
183
+ "content": "<|im_end|>",
184
+ "lstrip": false,
185
+ "normalized": false,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": true
189
+ }
190
+ },
191
+ "additional_special_tokens": [
192
+ "<|im_end|>"
193
+ ],
194
+ "bos_token": "<|begin▁of▁sentence|>",
195
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{%- set ns.is_first = true -%}{%- else %}{{'\\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<|Assistant|>' + content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\\n<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|>'}}{% endif %}",
196
+ "clean_up_tokenization_spaces": false,
197
+ "eos_token": "<|end▁of▁sentence|>",
198
+ "extra_special_tokens": {},
199
+ "legacy": true,
200
+ "model_max_length": 4096,
201
+ "pad_token": "<|end▁of▁sentence|>",
202
+ "padding_side": "right",
203
+ "sp_model_kwargs": {},
204
+ "split_special_tokens": false,
205
+ "tokenizer_class": "LlamaTokenizer",
206
+ "unk_token": null,
207
+ "use_default_system_prompt": false
208
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "total_flos": 17851226259456.0,
4
+ "train_loss": 0.46821982275556634,
5
+ "train_runtime": 1249.8096,
6
+ "train_samples_per_second": 0.69,
7
+ "train_steps_per_second": 0.086
8
+ }
trainer_log.jsonl ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 1, "total_steps": 108, "loss": 0.5807, "lr": 5e-06, "epoch": 0.009259259259259259, "percentage": 0.93, "elapsed_time": "0:00:13", "remaining_time": "0:24:55"}
2
+ {"current_steps": 2, "total_steps": 108, "loss": 0.534, "lr": 1e-05, "epoch": 0.018518518518518517, "percentage": 1.85, "elapsed_time": "0:00:24", "remaining_time": "0:21:27"}
3
+ {"current_steps": 3, "total_steps": 108, "loss": 0.6069, "lr": 9.997804182543973e-06, "epoch": 0.027777777777777776, "percentage": 2.78, "elapsed_time": "0:00:34", "remaining_time": "0:20:09"}
4
+ {"current_steps": 4, "total_steps": 108, "loss": 0.5863, "lr": 9.991218658821609e-06, "epoch": 0.037037037037037035, "percentage": 3.7, "elapsed_time": "0:00:44", "remaining_time": "0:19:22"}
5
+ {"current_steps": 5, "total_steps": 108, "loss": 0.5952, "lr": 9.980249213076085e-06, "epoch": 0.046296296296296294, "percentage": 4.63, "elapsed_time": "0:00:54", "remaining_time": "0:18:50"}
6
+ {"current_steps": 6, "total_steps": 108, "loss": 0.5384, "lr": 9.964905480067585e-06, "epoch": 0.05555555555555555, "percentage": 5.56, "elapsed_time": "0:01:05", "remaining_time": "0:18:27"}
7
+ {"current_steps": 7, "total_steps": 108, "loss": 0.5779, "lr": 9.945200936610821e-06, "epoch": 0.06481481481481481, "percentage": 6.48, "elapsed_time": "0:01:15", "remaining_time": "0:18:07"}
8
+ {"current_steps": 8, "total_steps": 108, "loss": 0.5487, "lr": 9.921152889737985e-06, "epoch": 0.07407407407407407, "percentage": 7.41, "elapsed_time": "0:01:25", "remaining_time": "0:17:49"}
9
+ {"current_steps": 9, "total_steps": 108, "loss": 0.5162, "lr": 9.892782461497521e-06, "epoch": 0.08333333333333333, "percentage": 8.33, "elapsed_time": "0:01:35", "remaining_time": "0:17:33"}
10
+ {"current_steps": 10, "total_steps": 108, "loss": 0.4825, "lr": 9.860114570402055e-06, "epoch": 0.09259259259259259, "percentage": 9.26, "elapsed_time": "0:01:45", "remaining_time": "0:17:18"}
11
+ {"current_steps": 11, "total_steps": 108, "loss": 0.4962, "lr": 9.823177909541795e-06, "epoch": 0.10185185185185185, "percentage": 10.19, "elapsed_time": "0:01:56", "remaining_time": "0:17:04"}
12
+ {"current_steps": 11, "total_steps": 108, "eval_loss": 0.5000379085540771, "epoch": 0.10185185185185185, "percentage": 10.19, "elapsed_time": "0:02:03", "remaining_time": "0:18:08"}
13
+ {"current_steps": 12, "total_steps": 108, "loss": 0.4456, "lr": 9.782004921382612e-06, "epoch": 0.1111111111111111, "percentage": 11.11, "elapsed_time": "0:02:13", "remaining_time": "0:17:47"}
14
+ {"current_steps": 13, "total_steps": 108, "loss": 0.4288, "lr": 9.736631769270958e-06, "epoch": 0.12037037037037036, "percentage": 12.04, "elapsed_time": "0:02:23", "remaining_time": "0:17:29"}
15
+ {"current_steps": 14, "total_steps": 108, "loss": 0.5855, "lr": 9.687098305670606e-06, "epoch": 0.12962962962962962, "percentage": 12.96, "elapsed_time": "0:02:33", "remaining_time": "0:17:13"}
16
+ {"current_steps": 15, "total_steps": 108, "loss": 0.5184, "lr": 9.633448037159167e-06, "epoch": 0.1388888888888889, "percentage": 13.89, "elapsed_time": "0:02:44", "remaining_time": "0:16:57"}
17
+ {"current_steps": 16, "total_steps": 108, "loss": 0.5568, "lr": 9.575728086215093e-06, "epoch": 0.14814814814814814, "percentage": 14.81, "elapsed_time": "0:02:54", "remaining_time": "0:16:42"}
18
+ {"current_steps": 17, "total_steps": 108, "loss": 0.4272, "lr": 9.513989149828718e-06, "epoch": 0.1574074074074074, "percentage": 15.74, "elapsed_time": "0:03:04", "remaining_time": "0:16:28"}
19
+ {"current_steps": 18, "total_steps": 108, "loss": 0.487, "lr": 9.448285454973739e-06, "epoch": 0.16666666666666666, "percentage": 16.67, "elapsed_time": "0:03:14", "remaining_time": "0:16:14"}
20
+ {"current_steps": 19, "total_steps": 108, "loss": 0.5321, "lr": 9.378674710978185e-06, "epoch": 0.17592592592592593, "percentage": 17.59, "elapsed_time": "0:03:25", "remaining_time": "0:16:00"}
21
+ {"current_steps": 20, "total_steps": 108, "loss": 0.5396, "lr": 9.305218058836778e-06, "epoch": 0.18518518518518517, "percentage": 18.52, "elapsed_time": "0:03:35", "remaining_time": "0:15:47"}
22
+ {"current_steps": 21, "total_steps": 108, "loss": 0.446, "lr": 9.22798001750913e-06, "epoch": 0.19444444444444445, "percentage": 19.44, "elapsed_time": "0:03:45", "remaining_time": "0:15:34"}
23
+ {"current_steps": 22, "total_steps": 108, "loss": 0.5313, "lr": 9.14702842725101e-06, "epoch": 0.2037037037037037, "percentage": 20.37, "elapsed_time": "0:03:55", "remaining_time": "0:15:21"}
24
+ {"current_steps": 22, "total_steps": 108, "eval_loss": 0.4791085124015808, "epoch": 0.2037037037037037, "percentage": 20.37, "elapsed_time": "0:04:02", "remaining_time": "0:15:49"}
25
+ {"current_steps": 23, "total_steps": 108, "loss": 0.4983, "lr": 9.062434390028407e-06, "epoch": 0.21296296296296297, "percentage": 21.3, "elapsed_time": "0:04:13", "remaining_time": "0:15:36"}
26
+ {"current_steps": 24, "total_steps": 108, "loss": 0.4642, "lr": 8.974272207066767e-06, "epoch": 0.2222222222222222, "percentage": 22.22, "elapsed_time": "0:04:23", "remaining_time": "0:15:23"}
27
+ {"current_steps": 25, "total_steps": 108, "loss": 0.4832, "lr": 8.882619313590212e-06, "epoch": 0.23148148148148148, "percentage": 23.15, "elapsed_time": "0:04:34", "remaining_time": "0:15:10"}
28
+ {"current_steps": 26, "total_steps": 108, "loss": 0.441, "lr": 8.787556210808101e-06, "epoch": 0.24074074074074073, "percentage": 24.07, "elapsed_time": "0:04:44", "remaining_time": "0:14:56"}
29
+ {"current_steps": 27, "total_steps": 108, "loss": 0.4489, "lr": 8.689166395208638e-06, "epoch": 0.25, "percentage": 25.0, "elapsed_time": "0:04:54", "remaining_time": "0:14:43"}
30
+ {"current_steps": 28, "total_steps": 108, "loss": 0.4971, "lr": 8.587536285221656e-06, "epoch": 0.25925925925925924, "percentage": 25.93, "elapsed_time": "0:05:04", "remaining_time": "0:14:31"}
31
+ {"current_steps": 29, "total_steps": 108, "loss": 0.5289, "lr": 8.482755145314987e-06, "epoch": 0.26851851851851855, "percentage": 26.85, "elapsed_time": "0:05:15", "remaining_time": "0:14:18"}
32
+ {"current_steps": 30, "total_steps": 108, "loss": 0.5496, "lr": 8.374915007591053e-06, "epoch": 0.2777777777777778, "percentage": 27.78, "elapsed_time": "0:05:25", "remaining_time": "0:14:06"}
33
+ {"current_steps": 31, "total_steps": 108, "loss": 0.5261, "lr": 8.264110590952609e-06, "epoch": 0.28703703703703703, "percentage": 28.7, "elapsed_time": "0:05:35", "remaining_time": "0:13:53"}
34
+ {"current_steps": 32, "total_steps": 108, "loss": 0.4814, "lr": 8.150439217908557e-06, "epoch": 0.2962962962962963, "percentage": 29.63, "elapsed_time": "0:05:45", "remaining_time": "0:13:41"}
35
+ {"current_steps": 33, "total_steps": 108, "loss": 0.4692, "lr": 8.034000729092967e-06, "epoch": 0.3055555555555556, "percentage": 30.56, "elapsed_time": "0:05:56", "remaining_time": "0:13:29"}
36
+ {"current_steps": 33, "total_steps": 108, "eval_loss": 0.46850860118865967, "epoch": 0.3055555555555556, "percentage": 30.56, "elapsed_time": "0:06:03", "remaining_time": "0:13:45"}
37
+ {"current_steps": 34, "total_steps": 108, "loss": 0.4372, "lr": 7.914897395572362e-06, "epoch": 0.3148148148148148, "percentage": 31.48, "elapsed_time": "0:06:13", "remaining_time": "0:13:33"}
38
+ {"current_steps": 35, "total_steps": 108, "loss": 0.5235, "lr": 7.793233829018263e-06, "epoch": 0.32407407407407407, "percentage": 32.41, "elapsed_time": "0:06:23", "remaining_time": "0:13:20"}
39
+ {"current_steps": 36, "total_steps": 108, "loss": 0.4339, "lr": 7.669116889823955e-06, "epoch": 0.3333333333333333, "percentage": 33.33, "elapsed_time": "0:06:34", "remaining_time": "0:13:08"}
40
+ {"current_steps": 37, "total_steps": 108, "loss": 0.4426, "lr": 7.542655593246103e-06, "epoch": 0.3425925925925926, "percentage": 34.26, "elapsed_time": "0:06:44", "remaining_time": "0:12:55"}
41
+ {"current_steps": 38, "total_steps": 108, "loss": 0.5744, "lr": 7.413961013653725e-06, "epoch": 0.35185185185185186, "percentage": 35.19, "elapsed_time": "0:06:54", "remaining_time": "0:12:43"}
42
+ {"current_steps": 39, "total_steps": 108, "loss": 0.3849, "lr": 7.283146186968566e-06, "epoch": 0.3611111111111111, "percentage": 36.11, "elapsed_time": "0:07:04", "remaining_time": "0:12:31"}
43
+ {"current_steps": 40, "total_steps": 108, "loss": 0.4057, "lr": 7.1503260113826035e-06, "epoch": 0.37037037037037035, "percentage": 37.04, "elapsed_time": "0:07:15", "remaining_time": "0:12:19"}
44
+ {"current_steps": 41, "total_steps": 108, "loss": 0.4149, "lr": 7.015617146439863e-06, "epoch": 0.37962962962962965, "percentage": 37.96, "elapsed_time": "0:07:25", "remaining_time": "0:12:07"}
45
+ {"current_steps": 42, "total_steps": 108, "loss": 0.4557, "lr": 6.879137910571191e-06, "epoch": 0.3888888888888889, "percentage": 38.89, "elapsed_time": "0:07:35", "remaining_time": "0:11:55"}
46
+ {"current_steps": 43, "total_steps": 108, "loss": 0.5052, "lr": 6.741008177171995e-06, "epoch": 0.39814814814814814, "percentage": 39.81, "elapsed_time": "0:07:45", "remaining_time": "0:11:43"}
47
+ {"current_steps": 44, "total_steps": 108, "loss": 0.3876, "lr": 6.601349269314188e-06, "epoch": 0.4074074074074074, "percentage": 40.74, "elapsed_time": "0:07:55", "remaining_time": "0:11:32"}
48
+ {"current_steps": 44, "total_steps": 108, "eval_loss": 0.4595443606376648, "epoch": 0.4074074074074074, "percentage": 40.74, "elapsed_time": "0:08:03", "remaining_time": "0:11:42"}
49
+ {"current_steps": 45, "total_steps": 108, "loss": 0.4381, "lr": 6.46028385318488e-06, "epoch": 0.4166666666666667, "percentage": 41.67, "elapsed_time": "0:08:13", "remaining_time": "0:11:30"}
50
+ {"current_steps": 46, "total_steps": 108, "loss": 0.433, "lr": 6.3179358303453386e-06, "epoch": 0.42592592592592593, "percentage": 42.59, "elapsed_time": "0:08:23", "remaining_time": "0:11:18"}
51
+ {"current_steps": 47, "total_steps": 108, "loss": 0.4699, "lr": 6.17443022890492e-06, "epoch": 0.4351851851851852, "percentage": 43.52, "elapsed_time": "0:08:33", "remaining_time": "0:11:06"}
52
+ {"current_steps": 48, "total_steps": 108, "loss": 0.4584, "lr": 6.029893093705492e-06, "epoch": 0.4444444444444444, "percentage": 44.44, "elapsed_time": "0:08:43", "remaining_time": "0:10:54"}
53
+ {"current_steps": 49, "total_steps": 108, "loss": 0.5243, "lr": 5.884451375612865e-06, "epoch": 0.4537037037037037, "percentage": 45.37, "elapsed_time": "0:08:54", "remaining_time": "0:10:43"}
54
+ {"current_steps": 50, "total_steps": 108, "loss": 0.4329, "lr": 5.738232820012407e-06, "epoch": 0.46296296296296297, "percentage": 46.3, "elapsed_time": "0:09:04", "remaining_time": "0:10:31"}
55
+ {"current_steps": 51, "total_steps": 108, "loss": 0.5633, "lr": 5.591365854606829e-06, "epoch": 0.4722222222222222, "percentage": 47.22, "elapsed_time": "0:09:14", "remaining_time": "0:10:19"}
56
+ {"current_steps": 52, "total_steps": 108, "loss": 0.445, "lr": 5.443979476614674e-06, "epoch": 0.48148148148148145, "percentage": 48.15, "elapsed_time": "0:09:24", "remaining_time": "0:10:08"}
57
+ {"current_steps": 53, "total_steps": 108, "loss": 0.3809, "lr": 5.296203139468572e-06, "epoch": 0.49074074074074076, "percentage": 49.07, "elapsed_time": "0:09:35", "remaining_time": "0:09:56"}
58
+ {"current_steps": 54, "total_steps": 108, "loss": 0.3964, "lr": 5.148166639112799e-06, "epoch": 0.5, "percentage": 50.0, "elapsed_time": "0:09:45", "remaining_time": "0:09:45"}
59
+ {"current_steps": 55, "total_steps": 108, "loss": 0.4768, "lr": 5e-06, "epoch": 0.5092592592592593, "percentage": 50.93, "elapsed_time": "0:09:55", "remaining_time": "0:09:33"}
60
+ {"current_steps": 55, "total_steps": 108, "eval_loss": 0.4542139768600464, "epoch": 0.5092592592592593, "percentage": 50.93, "elapsed_time": "0:10:02", "remaining_time": "0:09:40"}
61
+ {"current_steps": 56, "total_steps": 108, "loss": 0.4238, "lr": 4.8518333608872015e-06, "epoch": 0.5185185185185185, "percentage": 51.85, "elapsed_time": "0:10:13", "remaining_time": "0:09:29"}
62
+ {"current_steps": 57, "total_steps": 108, "loss": 0.5484, "lr": 4.703796860531429e-06, "epoch": 0.5277777777777778, "percentage": 52.78, "elapsed_time": "0:10:23", "remaining_time": "0:09:17"}
63
+ {"current_steps": 58, "total_steps": 108, "loss": 0.397, "lr": 4.556020523385326e-06, "epoch": 0.5370370370370371, "percentage": 53.7, "elapsed_time": "0:10:33", "remaining_time": "0:09:06"}
64
+ {"current_steps": 59, "total_steps": 108, "loss": 0.4452, "lr": 4.408634145393172e-06, "epoch": 0.5462962962962963, "percentage": 54.63, "elapsed_time": "0:10:44", "remaining_time": "0:08:54"}
65
+ {"current_steps": 60, "total_steps": 108, "loss": 0.4896, "lr": 4.261767179987595e-06, "epoch": 0.5555555555555556, "percentage": 55.56, "elapsed_time": "0:10:54", "remaining_time": "0:08:43"}
66
+ {"current_steps": 61, "total_steps": 108, "loss": 0.4887, "lr": 4.115548624387136e-06, "epoch": 0.5648148148148148, "percentage": 56.48, "elapsed_time": "0:11:04", "remaining_time": "0:08:31"}
67
+ {"current_steps": 62, "total_steps": 108, "loss": 0.4997, "lr": 3.970106906294509e-06, "epoch": 0.5740740740740741, "percentage": 57.41, "elapsed_time": "0:11:14", "remaining_time": "0:08:20"}
68
+ {"current_steps": 63, "total_steps": 108, "loss": 0.417, "lr": 3.825569771095082e-06, "epoch": 0.5833333333333334, "percentage": 58.33, "elapsed_time": "0:11:24", "remaining_time": "0:08:09"}
69
+ {"current_steps": 64, "total_steps": 108, "loss": 0.4504, "lr": 3.682064169654663e-06, "epoch": 0.5925925925925926, "percentage": 59.26, "elapsed_time": "0:11:35", "remaining_time": "0:07:57"}
70
+ {"current_steps": 65, "total_steps": 108, "loss": 0.4694, "lr": 3.539716146815122e-06, "epoch": 0.6018518518518519, "percentage": 60.19, "elapsed_time": "0:11:45", "remaining_time": "0:07:46"}
71
+ {"current_steps": 66, "total_steps": 108, "loss": 0.4985, "lr": 3.398650730685813e-06, "epoch": 0.6111111111111112, "percentage": 61.11, "elapsed_time": "0:11:55", "remaining_time": "0:07:35"}
72
+ {"current_steps": 66, "total_steps": 108, "eval_loss": 0.4495806097984314, "epoch": 0.6111111111111112, "percentage": 61.11, "elapsed_time": "0:12:02", "remaining_time": "0:07:40"}
73
+ {"current_steps": 67, "total_steps": 108, "loss": 0.4104, "lr": 3.258991822828007e-06, "epoch": 0.6203703703703703, "percentage": 62.04, "elapsed_time": "0:12:13", "remaining_time": "0:07:28"}
74
+ {"current_steps": 68, "total_steps": 108, "loss": 0.4926, "lr": 3.1208620894288105e-06, "epoch": 0.6296296296296297, "percentage": 62.96, "elapsed_time": "0:12:23", "remaining_time": "0:07:17"}
75
+ {"current_steps": 69, "total_steps": 108, "loss": 0.4655, "lr": 2.98438285356014e-06, "epoch": 0.6388888888888888, "percentage": 63.89, "elapsed_time": "0:12:34", "remaining_time": "0:07:06"}
76
+ {"current_steps": 70, "total_steps": 108, "loss": 0.4535, "lr": 2.8496739886173994e-06, "epoch": 0.6481481481481481, "percentage": 64.81, "elapsed_time": "0:12:44", "remaining_time": "0:06:54"}
77
+ {"current_steps": 71, "total_steps": 108, "loss": 0.5186, "lr": 2.716853813031435e-06, "epoch": 0.6574074074074074, "percentage": 65.74, "elapsed_time": "0:12:54", "remaining_time": "0:06:43"}
78
+ {"current_steps": 72, "total_steps": 108, "loss": 0.522, "lr": 2.5860389863462765e-06, "epoch": 0.6666666666666666, "percentage": 66.67, "elapsed_time": "0:13:04", "remaining_time": "0:06:32"}
79
+ {"current_steps": 73, "total_steps": 108, "loss": 0.4245, "lr": 2.457344406753899e-06, "epoch": 0.6759259259259259, "percentage": 67.59, "elapsed_time": "0:13:14", "remaining_time": "0:06:21"}
80
+ {"current_steps": 74, "total_steps": 108, "loss": 0.4806, "lr": 2.330883110176049e-06, "epoch": 0.6851851851851852, "percentage": 68.52, "elapsed_time": "0:13:25", "remaining_time": "0:06:09"}
81
+ {"current_steps": 75, "total_steps": 108, "loss": 0.5149, "lr": 2.2067661709817384e-06, "epoch": 0.6944444444444444, "percentage": 69.44, "elapsed_time": "0:13:35", "remaining_time": "0:05:58"}
82
+ {"current_steps": 76, "total_steps": 108, "loss": 0.4107, "lr": 2.0851026044276405e-06, "epoch": 0.7037037037037037, "percentage": 70.37, "elapsed_time": "0:13:45", "remaining_time": "0:05:47"}
83
+ {"current_steps": 77, "total_steps": 108, "loss": 0.4687, "lr": 1.9659992709070346e-06, "epoch": 0.7129629629629629, "percentage": 71.3, "elapsed_time": "0:13:55", "remaining_time": "0:05:36"}
84
+ {"current_steps": 77, "total_steps": 108, "eval_loss": 0.44653645157814026, "epoch": 0.7129629629629629, "percentage": 71.3, "elapsed_time": "0:14:03", "remaining_time": "0:05:39"}
85
+ {"current_steps": 78, "total_steps": 108, "loss": 0.4197, "lr": 1.8495607820914451e-06, "epoch": 0.7222222222222222, "percentage": 72.22, "elapsed_time": "0:14:13", "remaining_time": "0:05:28"}
86
+ {"current_steps": 79, "total_steps": 108, "loss": 0.3619, "lr": 1.7358894090473928e-06, "epoch": 0.7314814814814815, "percentage": 73.15, "elapsed_time": "0:14:23", "remaining_time": "0:05:17"}
87
+ {"current_steps": 80, "total_steps": 108, "loss": 0.3587, "lr": 1.6250849924089485e-06, "epoch": 0.7407407407407407, "percentage": 74.07, "elapsed_time": "0:14:34", "remaining_time": "0:05:05"}
88
+ {"current_steps": 81, "total_steps": 108, "loss": 0.3391, "lr": 1.5172448546850166e-06, "epoch": 0.75, "percentage": 75.0, "elapsed_time": "0:14:44", "remaining_time": "0:04:54"}
89
+ {"current_steps": 82, "total_steps": 108, "loss": 0.5386, "lr": 1.4124637147783431e-06, "epoch": 0.7592592592592593, "percentage": 75.93, "elapsed_time": "0:14:54", "remaining_time": "0:04:43"}
90
+ {"current_steps": 83, "total_steps": 108, "loss": 0.4069, "lr": 1.3108336047913633e-06, "epoch": 0.7685185185185185, "percentage": 76.85, "elapsed_time": "0:15:04", "remaining_time": "0:04:32"}
91
+ {"current_steps": 84, "total_steps": 108, "loss": 0.4371, "lr": 1.2124437891918995e-06, "epoch": 0.7777777777777778, "percentage": 77.78, "elapsed_time": "0:15:15", "remaining_time": "0:04:21"}
92
+ {"current_steps": 85, "total_steps": 108, "loss": 0.4374, "lr": 1.1173806864097885e-06, "epoch": 0.7870370370370371, "percentage": 78.7, "elapsed_time": "0:15:25", "remaining_time": "0:04:10"}
93
+ {"current_steps": 86, "total_steps": 108, "loss": 0.3986, "lr": 1.0257277929332332e-06, "epoch": 0.7962962962962963, "percentage": 79.63, "elapsed_time": "0:15:35", "remaining_time": "0:03:59"}
94
+ {"current_steps": 87, "total_steps": 108, "loss": 0.4473, "lr": 9.375656099715935e-07, "epoch": 0.8055555555555556, "percentage": 80.56, "elapsed_time": "0:15:45", "remaining_time": "0:03:48"}
95
+ {"current_steps": 88, "total_steps": 108, "loss": 0.4484, "lr": 8.529715727489912e-07, "epoch": 0.8148148148148148, "percentage": 81.48, "elapsed_time": "0:15:56", "remaining_time": "0:03:37"}
96
+ {"current_steps": 88, "total_steps": 108, "eval_loss": 0.4449349045753479, "epoch": 0.8148148148148148, "percentage": 81.48, "elapsed_time": "0:16:03", "remaining_time": "0:03:38"}
97
+ {"current_steps": 89, "total_steps": 108, "loss": 0.3425, "lr": 7.720199824908692e-07, "epoch": 0.8240740740740741, "percentage": 82.41, "elapsed_time": "0:16:13", "remaining_time": "0:03:27"}
98
+ {"current_steps": 90, "total_steps": 108, "loss": 0.4269, "lr": 6.947819411632223e-07, "epoch": 0.8333333333333334, "percentage": 83.33, "elapsed_time": "0:16:24", "remaining_time": "0:03:16"}
99
+ {"current_steps": 91, "total_steps": 108, "loss": 0.5674, "lr": 6.213252890218163e-07, "epoch": 0.8425925925925926, "percentage": 84.26, "elapsed_time": "0:16:34", "remaining_time": "0:03:05"}
100
+ {"current_steps": 92, "total_steps": 108, "loss": 0.454, "lr": 5.517145450262639e-07, "epoch": 0.8518518518518519, "percentage": 85.19, "elapsed_time": "0:16:44", "remaining_time": "0:02:54"}
101
+ {"current_steps": 93, "total_steps": 108, "loss": 0.3412, "lr": 4.860108501712824e-07, "epoch": 0.8611111111111112, "percentage": 86.11, "elapsed_time": "0:16:54", "remaining_time": "0:02:43"}
102
+ {"current_steps": 94, "total_steps": 108, "loss": 0.4292, "lr": 4.242719137849077e-07, "epoch": 0.8703703703703703, "percentage": 87.04, "elapsed_time": "0:17:05", "remaining_time": "0:02:32"}
103
+ {"current_steps": 95, "total_steps": 108, "loss": 0.4765, "lr": 3.665519628408332e-07, "epoch": 0.8796296296296297, "percentage": 87.96, "elapsed_time": "0:17:15", "remaining_time": "0:02:21"}
104
+ {"current_steps": 96, "total_steps": 108, "loss": 0.428, "lr": 3.1290169432939556e-07, "epoch": 0.8888888888888888, "percentage": 88.89, "elapsed_time": "0:17:25", "remaining_time": "0:02:10"}
105
+ {"current_steps": 97, "total_steps": 108, "loss": 0.4488, "lr": 2.6336823072904305e-07, "epoch": 0.8981481481481481, "percentage": 89.81, "elapsed_time": "0:17:35", "remaining_time": "0:01:59"}
106
+ {"current_steps": 98, "total_steps": 108, "loss": 0.3881, "lr": 2.179950786173879e-07, "epoch": 0.9074074074074074, "percentage": 90.74, "elapsed_time": "0:17:46", "remaining_time": "0:01:48"}
107
+ {"current_steps": 99, "total_steps": 108, "loss": 0.4809, "lr": 1.7682209045820687e-07, "epoch": 0.9166666666666666, "percentage": 91.67, "elapsed_time": "0:17:56", "remaining_time": "0:01:37"}
108
+ {"current_steps": 99, "total_steps": 108, "eval_loss": 0.4441840946674347, "epoch": 0.9166666666666666, "percentage": 91.67, "elapsed_time": "0:18:03", "remaining_time": "0:01:38"}
109
+ {"current_steps": 100, "total_steps": 108, "loss": 0.4533, "lr": 1.3988542959794627e-07, "epoch": 0.9259259259259259, "percentage": 92.59, "elapsed_time": "0:18:13", "remaining_time": "0:01:27"}
110
+ {"current_steps": 101, "total_steps": 108, "loss": 0.5236, "lr": 1.0721753850247984e-07, "epoch": 0.9351851851851852, "percentage": 93.52, "elapsed_time": "0:18:24", "remaining_time": "0:01:16"}
111
+ {"current_steps": 102, "total_steps": 108, "loss": 0.3763, "lr": 7.884711026201586e-08, "epoch": 0.9444444444444444, "percentage": 94.44, "elapsed_time": "0:18:34", "remaining_time": "0:01:05"}
112
+ {"current_steps": 103, "total_steps": 108, "loss": 0.4101, "lr": 5.479906338917984e-08, "epoch": 0.9537037037037037, "percentage": 95.37, "elapsed_time": "0:18:44", "remaining_time": "0:00:54"}
113
+ {"current_steps": 104, "total_steps": 108, "loss": 0.4942, "lr": 3.5094519932415417e-08, "epoch": 0.9629629629629629, "percentage": 96.3, "elapsed_time": "0:18:54", "remaining_time": "0:00:43"}
114
+ {"current_steps": 105, "total_steps": 108, "loss": 0.4778, "lr": 1.975078692391552e-08, "epoch": 0.9722222222222222, "percentage": 97.22, "elapsed_time": "0:19:05", "remaining_time": "0:00:32"}
115
+ {"current_steps": 106, "total_steps": 108, "loss": 0.4537, "lr": 8.781341178393244e-09, "epoch": 0.9814814814814815, "percentage": 98.15, "elapsed_time": "0:19:15", "remaining_time": "0:00:21"}
116
+ {"current_steps": 107, "total_steps": 108, "loss": 0.4192, "lr": 2.19581745602826e-09, "epoch": 0.9907407407407407, "percentage": 99.07, "elapsed_time": "0:19:25", "remaining_time": "0:00:10"}
117
+ {"current_steps": 108, "total_steps": 108, "loss": 0.3589, "lr": 0.0, "epoch": 1.0, "percentage": 100.0, "elapsed_time": "0:19:35", "remaining_time": "0:00:00"}
118
+ {"current_steps": 108, "total_steps": 108, "epoch": 1.0, "percentage": 100.0, "elapsed_time": "0:20:48", "remaining_time": "0:00:00"}
trainer_state.json ADDED
@@ -0,0 +1,870 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 11,
6
+ "global_step": 108,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.009259259259259259,
13
+ "grad_norm": 2.362648319863932,
14
+ "learning_rate": 5e-06,
15
+ "loss": 0.5807,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.018518518518518517,
20
+ "grad_norm": 2.136281230840684,
21
+ "learning_rate": 1e-05,
22
+ "loss": 0.534,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.027777777777777776,
27
+ "grad_norm": 2.2915803466254743,
28
+ "learning_rate": 9.997804182543973e-06,
29
+ "loss": 0.6069,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.037037037037037035,
34
+ "grad_norm": 1.817521417636344,
35
+ "learning_rate": 9.991218658821609e-06,
36
+ "loss": 0.5863,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.046296296296296294,
41
+ "grad_norm": 1.4406196993263543,
42
+ "learning_rate": 9.980249213076085e-06,
43
+ "loss": 0.5952,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.05555555555555555,
48
+ "grad_norm": 1.098132624881383,
49
+ "learning_rate": 9.964905480067585e-06,
50
+ "loss": 0.5384,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.06481481481481481,
55
+ "grad_norm": 1.2038829059152325,
56
+ "learning_rate": 9.945200936610821e-06,
57
+ "loss": 0.5779,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.07407407407407407,
62
+ "grad_norm": 1.1568981182086557,
63
+ "learning_rate": 9.921152889737985e-06,
64
+ "loss": 0.5487,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.08333333333333333,
69
+ "grad_norm": 1.009464783024193,
70
+ "learning_rate": 9.892782461497521e-06,
71
+ "loss": 0.5162,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.09259259259259259,
76
+ "grad_norm": 1.0403262733706924,
77
+ "learning_rate": 9.860114570402055e-06,
78
+ "loss": 0.4825,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.10185185185185185,
83
+ "grad_norm": 1.017871214392586,
84
+ "learning_rate": 9.823177909541795e-06,
85
+ "loss": 0.4962,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.10185185185185185,
90
+ "eval_loss": 0.5000379085540771,
91
+ "eval_runtime": 7.2133,
92
+ "eval_samples_per_second": 1.248,
93
+ "eval_steps_per_second": 0.277,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.1111111111111111,
98
+ "grad_norm": 1.0511034662384473,
99
+ "learning_rate": 9.782004921382612e-06,
100
+ "loss": 0.4456,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.12037037037037036,
105
+ "grad_norm": 0.8657886515614241,
106
+ "learning_rate": 9.736631769270958e-06,
107
+ "loss": 0.4288,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.12962962962962962,
112
+ "grad_norm": 1.040741797545574,
113
+ "learning_rate": 9.687098305670606e-06,
114
+ "loss": 0.5855,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.1388888888888889,
119
+ "grad_norm": 1.3516228019504957,
120
+ "learning_rate": 9.633448037159167e-06,
121
+ "loss": 0.5184,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.14814814814814814,
126
+ "grad_norm": 0.9843907475003576,
127
+ "learning_rate": 9.575728086215093e-06,
128
+ "loss": 0.5568,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.1574074074074074,
133
+ "grad_norm": 0.8979836323930017,
134
+ "learning_rate": 9.513989149828718e-06,
135
+ "loss": 0.4272,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.16666666666666666,
140
+ "grad_norm": 1.1188974861045773,
141
+ "learning_rate": 9.448285454973739e-06,
142
+ "loss": 0.487,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.17592592592592593,
147
+ "grad_norm": 1.048669002845475,
148
+ "learning_rate": 9.378674710978185e-06,
149
+ "loss": 0.5321,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.18518518518518517,
154
+ "grad_norm": 1.2366432725685659,
155
+ "learning_rate": 9.305218058836778e-06,
156
+ "loss": 0.5396,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.19444444444444445,
161
+ "grad_norm": 1.0072812014692536,
162
+ "learning_rate": 9.22798001750913e-06,
163
+ "loss": 0.446,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.2037037037037037,
168
+ "grad_norm": 1.0654455593583398,
169
+ "learning_rate": 9.14702842725101e-06,
170
+ "loss": 0.5313,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.2037037037037037,
175
+ "eval_loss": 0.4791085124015808,
176
+ "eval_runtime": 7.1652,
177
+ "eval_samples_per_second": 1.256,
178
+ "eval_steps_per_second": 0.279,
179
+ "step": 22
180
+ },
181
+ {
182
+ "epoch": 0.21296296296296297,
183
+ "grad_norm": 1.0051504278398855,
184
+ "learning_rate": 9.062434390028407e-06,
185
+ "loss": 0.4983,
186
+ "step": 23
187
+ },
188
+ {
189
+ "epoch": 0.2222222222222222,
190
+ "grad_norm": 0.9621751996571424,
191
+ "learning_rate": 8.974272207066767e-06,
192
+ "loss": 0.4642,
193
+ "step": 24
194
+ },
195
+ {
196
+ "epoch": 0.23148148148148148,
197
+ "grad_norm": 0.9763151052182862,
198
+ "learning_rate": 8.882619313590212e-06,
199
+ "loss": 0.4832,
200
+ "step": 25
201
+ },
202
+ {
203
+ "epoch": 0.24074074074074073,
204
+ "grad_norm": 0.934861026969845,
205
+ "learning_rate": 8.787556210808101e-06,
206
+ "loss": 0.441,
207
+ "step": 26
208
+ },
209
+ {
210
+ "epoch": 0.25,
211
+ "grad_norm": 1.0362041830687405,
212
+ "learning_rate": 8.689166395208638e-06,
213
+ "loss": 0.4489,
214
+ "step": 27
215
+ },
216
+ {
217
+ "epoch": 0.25925925925925924,
218
+ "grad_norm": 0.9049359816184893,
219
+ "learning_rate": 8.587536285221656e-06,
220
+ "loss": 0.4971,
221
+ "step": 28
222
+ },
223
+ {
224
+ "epoch": 0.26851851851851855,
225
+ "grad_norm": 0.9982959368756156,
226
+ "learning_rate": 8.482755145314987e-06,
227
+ "loss": 0.5289,
228
+ "step": 29
229
+ },
230
+ {
231
+ "epoch": 0.2777777777777778,
232
+ "grad_norm": 2.050950638692456,
233
+ "learning_rate": 8.374915007591053e-06,
234
+ "loss": 0.5496,
235
+ "step": 30
236
+ },
237
+ {
238
+ "epoch": 0.28703703703703703,
239
+ "grad_norm": 1.0501945401080932,
240
+ "learning_rate": 8.264110590952609e-06,
241
+ "loss": 0.5261,
242
+ "step": 31
243
+ },
244
+ {
245
+ "epoch": 0.2962962962962963,
246
+ "grad_norm": 0.9229687907732845,
247
+ "learning_rate": 8.150439217908557e-06,
248
+ "loss": 0.4814,
249
+ "step": 32
250
+ },
251
+ {
252
+ "epoch": 0.3055555555555556,
253
+ "grad_norm": 1.4319914933917381,
254
+ "learning_rate": 8.034000729092967e-06,
255
+ "loss": 0.4692,
256
+ "step": 33
257
+ },
258
+ {
259
+ "epoch": 0.3055555555555556,
260
+ "eval_loss": 0.46850860118865967,
261
+ "eval_runtime": 7.148,
262
+ "eval_samples_per_second": 1.259,
263
+ "eval_steps_per_second": 0.28,
264
+ "step": 33
265
+ },
266
+ {
267
+ "epoch": 0.3148148148148148,
268
+ "grad_norm": 0.8881275342675574,
269
+ "learning_rate": 7.914897395572362e-06,
270
+ "loss": 0.4372,
271
+ "step": 34
272
+ },
273
+ {
274
+ "epoch": 0.32407407407407407,
275
+ "grad_norm": 0.9840343978467488,
276
+ "learning_rate": 7.793233829018263e-06,
277
+ "loss": 0.5235,
278
+ "step": 35
279
+ },
280
+ {
281
+ "epoch": 0.3333333333333333,
282
+ "grad_norm": 0.8470332819900018,
283
+ "learning_rate": 7.669116889823955e-06,
284
+ "loss": 0.4339,
285
+ "step": 36
286
+ },
287
+ {
288
+ "epoch": 0.3425925925925926,
289
+ "grad_norm": 0.8893330836178615,
290
+ "learning_rate": 7.542655593246103e-06,
291
+ "loss": 0.4426,
292
+ "step": 37
293
+ },
294
+ {
295
+ "epoch": 0.35185185185185186,
296
+ "grad_norm": 1.0550698950573756,
297
+ "learning_rate": 7.413961013653725e-06,
298
+ "loss": 0.5744,
299
+ "step": 38
300
+ },
301
+ {
302
+ "epoch": 0.3611111111111111,
303
+ "grad_norm": 0.8784333801568516,
304
+ "learning_rate": 7.283146186968566e-06,
305
+ "loss": 0.3849,
306
+ "step": 39
307
+ },
308
+ {
309
+ "epoch": 0.37037037037037035,
310
+ "grad_norm": 0.9142401659654863,
311
+ "learning_rate": 7.1503260113826035e-06,
312
+ "loss": 0.4057,
313
+ "step": 40
314
+ },
315
+ {
316
+ "epoch": 0.37962962962962965,
317
+ "grad_norm": 0.8743924562233322,
318
+ "learning_rate": 7.015617146439863e-06,
319
+ "loss": 0.4149,
320
+ "step": 41
321
+ },
322
+ {
323
+ "epoch": 0.3888888888888889,
324
+ "grad_norm": 0.9155700365107549,
325
+ "learning_rate": 6.879137910571191e-06,
326
+ "loss": 0.4557,
327
+ "step": 42
328
+ },
329
+ {
330
+ "epoch": 0.39814814814814814,
331
+ "grad_norm": 0.9844599172183693,
332
+ "learning_rate": 6.741008177171995e-06,
333
+ "loss": 0.5052,
334
+ "step": 43
335
+ },
336
+ {
337
+ "epoch": 0.4074074074074074,
338
+ "grad_norm": 0.8432119339426061,
339
+ "learning_rate": 6.601349269314188e-06,
340
+ "loss": 0.3876,
341
+ "step": 44
342
+ },
343
+ {
344
+ "epoch": 0.4074074074074074,
345
+ "eval_loss": 0.4595443606376648,
346
+ "eval_runtime": 7.1719,
347
+ "eval_samples_per_second": 1.255,
348
+ "eval_steps_per_second": 0.279,
349
+ "step": 44
350
+ },
351
+ {
352
+ "epoch": 0.4166666666666667,
353
+ "grad_norm": 0.9547733839048285,
354
+ "learning_rate": 6.46028385318488e-06,
355
+ "loss": 0.4381,
356
+ "step": 45
357
+ },
358
+ {
359
+ "epoch": 0.42592592592592593,
360
+ "grad_norm": 0.9165610947735227,
361
+ "learning_rate": 6.3179358303453386e-06,
362
+ "loss": 0.433,
363
+ "step": 46
364
+ },
365
+ {
366
+ "epoch": 0.4351851851851852,
367
+ "grad_norm": 0.9276788988821667,
368
+ "learning_rate": 6.17443022890492e-06,
369
+ "loss": 0.4699,
370
+ "step": 47
371
+ },
372
+ {
373
+ "epoch": 0.4444444444444444,
374
+ "grad_norm": 0.9408707549804078,
375
+ "learning_rate": 6.029893093705492e-06,
376
+ "loss": 0.4584,
377
+ "step": 48
378
+ },
379
+ {
380
+ "epoch": 0.4537037037037037,
381
+ "grad_norm": 0.9822969953152866,
382
+ "learning_rate": 5.884451375612865e-06,
383
+ "loss": 0.5243,
384
+ "step": 49
385
+ },
386
+ {
387
+ "epoch": 0.46296296296296297,
388
+ "grad_norm": 1.0689960747907674,
389
+ "learning_rate": 5.738232820012407e-06,
390
+ "loss": 0.4329,
391
+ "step": 50
392
+ },
393
+ {
394
+ "epoch": 0.4722222222222222,
395
+ "grad_norm": 1.0494906655322942,
396
+ "learning_rate": 5.591365854606829e-06,
397
+ "loss": 0.5633,
398
+ "step": 51
399
+ },
400
+ {
401
+ "epoch": 0.48148148148148145,
402
+ "grad_norm": 0.8987830176611722,
403
+ "learning_rate": 5.443979476614674e-06,
404
+ "loss": 0.445,
405
+ "step": 52
406
+ },
407
+ {
408
+ "epoch": 0.49074074074074076,
409
+ "grad_norm": 0.8746204581445627,
410
+ "learning_rate": 5.296203139468572e-06,
411
+ "loss": 0.3809,
412
+ "step": 53
413
+ },
414
+ {
415
+ "epoch": 0.5,
416
+ "grad_norm": 0.8125477508425051,
417
+ "learning_rate": 5.148166639112799e-06,
418
+ "loss": 0.3964,
419
+ "step": 54
420
+ },
421
+ {
422
+ "epoch": 0.5092592592592593,
423
+ "grad_norm": 0.907249706367073,
424
+ "learning_rate": 5e-06,
425
+ "loss": 0.4768,
426
+ "step": 55
427
+ },
428
+ {
429
+ "epoch": 0.5092592592592593,
430
+ "eval_loss": 0.4542139768600464,
431
+ "eval_runtime": 7.1716,
432
+ "eval_samples_per_second": 1.255,
433
+ "eval_steps_per_second": 0.279,
434
+ "step": 55
435
+ },
436
+ {
437
+ "epoch": 0.5185185185185185,
438
+ "grad_norm": 0.8641393129712072,
439
+ "learning_rate": 4.8518333608872015e-06,
440
+ "loss": 0.4238,
441
+ "step": 56
442
+ },
443
+ {
444
+ "epoch": 0.5277777777777778,
445
+ "grad_norm": 1.3038267949545501,
446
+ "learning_rate": 4.703796860531429e-06,
447
+ "loss": 0.5484,
448
+ "step": 57
449
+ },
450
+ {
451
+ "epoch": 0.5370370370370371,
452
+ "grad_norm": 1.0286161889066556,
453
+ "learning_rate": 4.556020523385326e-06,
454
+ "loss": 0.397,
455
+ "step": 58
456
+ },
457
+ {
458
+ "epoch": 0.5462962962962963,
459
+ "grad_norm": 0.8754084053422794,
460
+ "learning_rate": 4.408634145393172e-06,
461
+ "loss": 0.4452,
462
+ "step": 59
463
+ },
464
+ {
465
+ "epoch": 0.5555555555555556,
466
+ "grad_norm": 0.935284958978312,
467
+ "learning_rate": 4.261767179987595e-06,
468
+ "loss": 0.4896,
469
+ "step": 60
470
+ },
471
+ {
472
+ "epoch": 0.5648148148148148,
473
+ "grad_norm": 0.9674393986889579,
474
+ "learning_rate": 4.115548624387136e-06,
475
+ "loss": 0.4887,
476
+ "step": 61
477
+ },
478
+ {
479
+ "epoch": 0.5740740740740741,
480
+ "grad_norm": 0.9724892358854195,
481
+ "learning_rate": 3.970106906294509e-06,
482
+ "loss": 0.4997,
483
+ "step": 62
484
+ },
485
+ {
486
+ "epoch": 0.5833333333333334,
487
+ "grad_norm": 0.8794971763479272,
488
+ "learning_rate": 3.825569771095082e-06,
489
+ "loss": 0.417,
490
+ "step": 63
491
+ },
492
+ {
493
+ "epoch": 0.5925925925925926,
494
+ "grad_norm": 0.8881388944091057,
495
+ "learning_rate": 3.682064169654663e-06,
496
+ "loss": 0.4504,
497
+ "step": 64
498
+ },
499
+ {
500
+ "epoch": 0.6018518518518519,
501
+ "grad_norm": 0.9193120996402042,
502
+ "learning_rate": 3.539716146815122e-06,
503
+ "loss": 0.4694,
504
+ "step": 65
505
+ },
506
+ {
507
+ "epoch": 0.6111111111111112,
508
+ "grad_norm": 1.0073500011381085,
509
+ "learning_rate": 3.398650730685813e-06,
510
+ "loss": 0.4985,
511
+ "step": 66
512
+ },
513
+ {
514
+ "epoch": 0.6111111111111112,
515
+ "eval_loss": 0.4495806097984314,
516
+ "eval_runtime": 7.1798,
517
+ "eval_samples_per_second": 1.254,
518
+ "eval_steps_per_second": 0.279,
519
+ "step": 66
520
+ },
521
+ {
522
+ "epoch": 0.6203703703703703,
523
+ "grad_norm": 0.824519734053682,
524
+ "learning_rate": 3.258991822828007e-06,
525
+ "loss": 0.4104,
526
+ "step": 67
527
+ },
528
+ {
529
+ "epoch": 0.6296296296296297,
530
+ "grad_norm": 0.9368830049136432,
531
+ "learning_rate": 3.1208620894288105e-06,
532
+ "loss": 0.4926,
533
+ "step": 68
534
+ },
535
+ {
536
+ "epoch": 0.6388888888888888,
537
+ "grad_norm": 1.1454803265014575,
538
+ "learning_rate": 2.98438285356014e-06,
539
+ "loss": 0.4655,
540
+ "step": 69
541
+ },
542
+ {
543
+ "epoch": 0.6481481481481481,
544
+ "grad_norm": 0.8964782710358511,
545
+ "learning_rate": 2.8496739886173994e-06,
546
+ "loss": 0.4535,
547
+ "step": 70
548
+ },
549
+ {
550
+ "epoch": 0.6574074074074074,
551
+ "grad_norm": 0.9529134597913587,
552
+ "learning_rate": 2.716853813031435e-06,
553
+ "loss": 0.5186,
554
+ "step": 71
555
+ },
556
+ {
557
+ "epoch": 0.6666666666666666,
558
+ "grad_norm": 0.963788290306135,
559
+ "learning_rate": 2.5860389863462765e-06,
560
+ "loss": 0.522,
561
+ "step": 72
562
+ },
563
+ {
564
+ "epoch": 0.6759259259259259,
565
+ "grad_norm": 0.8411162085924286,
566
+ "learning_rate": 2.457344406753899e-06,
567
+ "loss": 0.4245,
568
+ "step": 73
569
+ },
570
+ {
571
+ "epoch": 0.6851851851851852,
572
+ "grad_norm": 0.8871221033397801,
573
+ "learning_rate": 2.330883110176049e-06,
574
+ "loss": 0.4806,
575
+ "step": 74
576
+ },
577
+ {
578
+ "epoch": 0.6944444444444444,
579
+ "grad_norm": 0.9550800145418555,
580
+ "learning_rate": 2.2067661709817384e-06,
581
+ "loss": 0.5149,
582
+ "step": 75
583
+ },
584
+ {
585
+ "epoch": 0.7037037037037037,
586
+ "grad_norm": 0.8501908519121222,
587
+ "learning_rate": 2.0851026044276405e-06,
588
+ "loss": 0.4107,
589
+ "step": 76
590
+ },
591
+ {
592
+ "epoch": 0.7129629629629629,
593
+ "grad_norm": 0.8678719046436287,
594
+ "learning_rate": 1.9659992709070346e-06,
595
+ "loss": 0.4687,
596
+ "step": 77
597
+ },
598
+ {
599
+ "epoch": 0.7129629629629629,
600
+ "eval_loss": 0.44653645157814026,
601
+ "eval_runtime": 7.1486,
602
+ "eval_samples_per_second": 1.259,
603
+ "eval_steps_per_second": 0.28,
604
+ "step": 77
605
+ },
606
+ {
607
+ "epoch": 0.7222222222222222,
608
+ "grad_norm": 0.876245605736801,
609
+ "learning_rate": 1.8495607820914451e-06,
610
+ "loss": 0.4197,
611
+ "step": 78
612
+ },
613
+ {
614
+ "epoch": 0.7314814814814815,
615
+ "grad_norm": 0.7970757955872202,
616
+ "learning_rate": 1.7358894090473928e-06,
617
+ "loss": 0.3619,
618
+ "step": 79
619
+ },
620
+ {
621
+ "epoch": 0.7407407407407407,
622
+ "grad_norm": 0.7955115388136204,
623
+ "learning_rate": 1.6250849924089485e-06,
624
+ "loss": 0.3587,
625
+ "step": 80
626
+ },
627
+ {
628
+ "epoch": 0.75,
629
+ "grad_norm": 0.7782242902212891,
630
+ "learning_rate": 1.5172448546850166e-06,
631
+ "loss": 0.3391,
632
+ "step": 81
633
+ },
634
+ {
635
+ "epoch": 0.7592592592592593,
636
+ "grad_norm": 0.9995473034082181,
637
+ "learning_rate": 1.4124637147783431e-06,
638
+ "loss": 0.5386,
639
+ "step": 82
640
+ },
641
+ {
642
+ "epoch": 0.7685185185185185,
643
+ "grad_norm": 0.8444693019666363,
644
+ "learning_rate": 1.3108336047913633e-06,
645
+ "loss": 0.4069,
646
+ "step": 83
647
+ },
648
+ {
649
+ "epoch": 0.7777777777777778,
650
+ "grad_norm": 0.8808187390006551,
651
+ "learning_rate": 1.2124437891918995e-06,
652
+ "loss": 0.4371,
653
+ "step": 84
654
+ },
655
+ {
656
+ "epoch": 0.7870370370370371,
657
+ "grad_norm": 0.9813077333772956,
658
+ "learning_rate": 1.1173806864097885e-06,
659
+ "loss": 0.4374,
660
+ "step": 85
661
+ },
662
+ {
663
+ "epoch": 0.7962962962962963,
664
+ "grad_norm": 0.8064326056384253,
665
+ "learning_rate": 1.0257277929332332e-06,
666
+ "loss": 0.3986,
667
+ "step": 86
668
+ },
669
+ {
670
+ "epoch": 0.8055555555555556,
671
+ "grad_norm": 0.8710631137320209,
672
+ "learning_rate": 9.375656099715935e-07,
673
+ "loss": 0.4473,
674
+ "step": 87
675
+ },
676
+ {
677
+ "epoch": 0.8148148148148148,
678
+ "grad_norm": 0.887311644170428,
679
+ "learning_rate": 8.529715727489912e-07,
680
+ "loss": 0.4484,
681
+ "step": 88
682
+ },
683
+ {
684
+ "epoch": 0.8148148148148148,
685
+ "eval_loss": 0.4449349045753479,
686
+ "eval_runtime": 7.1634,
687
+ "eval_samples_per_second": 1.256,
688
+ "eval_steps_per_second": 0.279,
689
+ "step": 88
690
+ },
691
+ {
692
+ "epoch": 0.8240740740740741,
693
+ "grad_norm": 0.7647806015755853,
694
+ "learning_rate": 7.720199824908692e-07,
695
+ "loss": 0.3425,
696
+ "step": 89
697
+ },
698
+ {
699
+ "epoch": 0.8333333333333334,
700
+ "grad_norm": 0.8976917694082569,
701
+ "learning_rate": 6.947819411632223e-07,
702
+ "loss": 0.4269,
703
+ "step": 90
704
+ },
705
+ {
706
+ "epoch": 0.8425925925925926,
707
+ "grad_norm": 0.9316801386853545,
708
+ "learning_rate": 6.213252890218163e-07,
709
+ "loss": 0.5674,
710
+ "step": 91
711
+ },
712
+ {
713
+ "epoch": 0.8518518518518519,
714
+ "grad_norm": 0.8870482831956321,
715
+ "learning_rate": 5.517145450262639e-07,
716
+ "loss": 0.454,
717
+ "step": 92
718
+ },
719
+ {
720
+ "epoch": 0.8611111111111112,
721
+ "grad_norm": 0.7768323848063172,
722
+ "learning_rate": 4.860108501712824e-07,
723
+ "loss": 0.3412,
724
+ "step": 93
725
+ },
726
+ {
727
+ "epoch": 0.8703703703703703,
728
+ "grad_norm": 0.8658069877384894,
729
+ "learning_rate": 4.242719137849077e-07,
730
+ "loss": 0.4292,
731
+ "step": 94
732
+ },
733
+ {
734
+ "epoch": 0.8796296296296297,
735
+ "grad_norm": 0.9112502068381936,
736
+ "learning_rate": 3.665519628408332e-07,
737
+ "loss": 0.4765,
738
+ "step": 95
739
+ },
740
+ {
741
+ "epoch": 0.8888888888888888,
742
+ "grad_norm": 0.8505617937603335,
743
+ "learning_rate": 3.1290169432939556e-07,
744
+ "loss": 0.428,
745
+ "step": 96
746
+ },
747
+ {
748
+ "epoch": 0.8981481481481481,
749
+ "grad_norm": 0.8868085158482631,
750
+ "learning_rate": 2.6336823072904305e-07,
751
+ "loss": 0.4488,
752
+ "step": 97
753
+ },
754
+ {
755
+ "epoch": 0.9074074074074074,
756
+ "grad_norm": 0.8291365248164002,
757
+ "learning_rate": 2.179950786173879e-07,
758
+ "loss": 0.3881,
759
+ "step": 98
760
+ },
761
+ {
762
+ "epoch": 0.9166666666666666,
763
+ "grad_norm": 0.9100636810782011,
764
+ "learning_rate": 1.7682209045820687e-07,
765
+ "loss": 0.4809,
766
+ "step": 99
767
+ },
768
+ {
769
+ "epoch": 0.9166666666666666,
770
+ "eval_loss": 0.4441840946674347,
771
+ "eval_runtime": 7.1692,
772
+ "eval_samples_per_second": 1.255,
773
+ "eval_steps_per_second": 0.279,
774
+ "step": 99
775
+ },
776
+ {
777
+ "epoch": 0.9259259259259259,
778
+ "grad_norm": 0.8985637565061618,
779
+ "learning_rate": 1.3988542959794627e-07,
780
+ "loss": 0.4533,
781
+ "step": 100
782
+ },
783
+ {
784
+ "epoch": 0.9351851851851852,
785
+ "grad_norm": 0.9612580974302548,
786
+ "learning_rate": 1.0721753850247984e-07,
787
+ "loss": 0.5236,
788
+ "step": 101
789
+ },
790
+ {
791
+ "epoch": 0.9444444444444444,
792
+ "grad_norm": 0.8120796428633341,
793
+ "learning_rate": 7.884711026201586e-08,
794
+ "loss": 0.3763,
795
+ "step": 102
796
+ },
797
+ {
798
+ "epoch": 0.9537037037037037,
799
+ "grad_norm": 0.8644849276991213,
800
+ "learning_rate": 5.479906338917984e-08,
801
+ "loss": 0.4101,
802
+ "step": 103
803
+ },
804
+ {
805
+ "epoch": 0.9629629629629629,
806
+ "grad_norm": 0.8946182268462048,
807
+ "learning_rate": 3.5094519932415417e-08,
808
+ "loss": 0.4942,
809
+ "step": 104
810
+ },
811
+ {
812
+ "epoch": 0.9722222222222222,
813
+ "grad_norm": 0.9166159846522884,
814
+ "learning_rate": 1.975078692391552e-08,
815
+ "loss": 0.4778,
816
+ "step": 105
817
+ },
818
+ {
819
+ "epoch": 0.9814814814814815,
820
+ "grad_norm": 0.9473852601201989,
821
+ "learning_rate": 8.781341178393244e-09,
822
+ "loss": 0.4537,
823
+ "step": 106
824
+ },
825
+ {
826
+ "epoch": 0.9907407407407407,
827
+ "grad_norm": 0.8895854364679423,
828
+ "learning_rate": 2.19581745602826e-09,
829
+ "loss": 0.4192,
830
+ "step": 107
831
+ },
832
+ {
833
+ "epoch": 1.0,
834
+ "grad_norm": 0.7849733548858487,
835
+ "learning_rate": 0.0,
836
+ "loss": 0.3589,
837
+ "step": 108
838
+ },
839
+ {
840
+ "epoch": 1.0,
841
+ "step": 108,
842
+ "total_flos": 17851226259456.0,
843
+ "train_loss": 0.46821982275556634,
844
+ "train_runtime": 1249.8096,
845
+ "train_samples_per_second": 0.69,
846
+ "train_steps_per_second": 0.086
847
+ }
848
+ ],
849
+ "logging_steps": 1,
850
+ "max_steps": 108,
851
+ "num_input_tokens_seen": 0,
852
+ "num_train_epochs": 1,
853
+ "save_steps": 108,
854
+ "stateful_callbacks": {
855
+ "TrainerControl": {
856
+ "args": {
857
+ "should_epoch_stop": false,
858
+ "should_evaluate": false,
859
+ "should_log": false,
860
+ "should_save": true,
861
+ "should_training_stop": true
862
+ },
863
+ "attributes": {}
864
+ }
865
+ },
866
+ "total_flos": 17851226259456.0,
867
+ "train_batch_size": 1,
868
+ "trial_name": null,
869
+ "trial_params": null
870
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0f5d792c52ef3a9ba9189020a5cf49fda646d508b5c06f435c64a9711065aef
3
+ size 7608
training_eval_loss.png ADDED
training_loss.png ADDED