--- license: other license_name: tongyi-qianwen-license-agreement license_link: https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT datasets: - OpenAssistant/oasst1 - zetavg/ShareGPT-Processed - augmxnt/ultra-orca-boros-en-ja-v1 language: - ja - en ---
Qwen/Qwen-14B-Chat + Karasu's finetuning datasets # Demo ・ モデルのデモ [Model demo ・ モデルのデモ](https://lightblue-qarasu.serveo.net/) # Blog post・説明の記事 [Blog post・説明の記事](https://note.com/peter_lightblue/n/ne08a7c8cc47a) # Evaluation ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b63f8ad57e02621dc93c8b/s3eUP07LOPkxwzNS2p9Yp.png) In our internal evaluations, we find the Qarasu model to have particularly high performance on the MTーBench benchmark. We are currently awaiting external evaluations. # How to use ### Hugggingface ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("lightblue/qarasu-14B-chat-plus-unleashed", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("lightblue/qarasu-14B-chat-plus-unleashed", torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True) pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) messages = [{"role": "system", "content": "あなたはAIアシスタントです。"}] messages.append({"role": "user", "content": "イギリスの首相は誰ですか?"}) prompt = tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False) pipe(prompt, max_new_tokens=100, do_sample=False, temperature=0.0, return_full_text=False) ``` ### VLLM ```python from vllm import LLM, SamplingParams sampling_params = SamplingParams(temperature=0.0, max_tokens=100) llm = LLM(model="lightblue/qarasu-14B-chat-plus-unleashed", trust_remote_code=True) messages = [{"role": "system", "content": "あなたはAIアシスタントです。"}] messages.append({"role": "user", "content": "イギリスの首相は誰ですか?"}) prompt = llm.llm_engine.tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False) prompts = [prompt] outputs = llm.generate(prompts, sampling_params) for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") ``` # Base checkpoint [Qwen/Qwen-14B-Chat](https://huggingface.co/Qwen/Qwen-14B-Chat) # Training datasets (total ~7B) The same as the 'plus' checkpoint, but with about 6K refusals ("申し訳ありませんが、。。。") filtered out from the category dataset * Lightblue's suite of Kujira datasets (unreleased) * Lightblue's own question-based datasets (unreleased) * Lightblue's own category-based datasets (unreleased) * [OASST](https://huggingface.co/datasets/OpenAssistant/oasst1) (Japanese chats only) * [ShareGPT](https://huggingface.co/datasets/zetavg/ShareGPT-Processed) (Japanese chats only) * [augmxnt/ultra-orca-boros-en-ja-v1](https://huggingface.co/datasets/augmxnt/ultra-orca-boros-en-ja-v1) (['airoboros', 'slimorca', 'ultrafeedback', 'airoboros_ja_new'] only) # Developed by ### Engineers Peter Devine Sho Higuchi ### Advisors Yuuki Yamanaka Atom Sonoda ### Project manager Shunichi Taniguchi ### Dataset evaluator Renju Aoki