--- license: other base_model: lightblue/suzume-llama-3-8B-multilingual tags: - generated_from_trainer model-index: - name: workspace/llm_training/axolotl/llama3-multilingual-orpo/output_mitsu_full_borda results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: lightblue/suzume-llama-3-8B-multilingual model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer # PreTrainedTokenizerFast load_in_8bit: false load_in_4bit: false strict: false rl: orpo orpo_alpha: 0.1 remove_unused_columns: false chat_template: chatml datasets: - path: lightblue/mitsu_full_borda type: orpo.chat_template conversation: llama-3 dataset_prepared_path: /workspace/llm_training/axolotl/llama3-multilingual-orpo/prepared_mitsu_full_borda val_set_size: 0.02 output_dir: /workspace/llm_training/axolotl/llama3-multilingual-orpo/output_mitsu_full_borda sequence_len: 8192 sample_packing: false pad_to_sequence_len: true use_wandb: true wandb_project: axolotl wandb_entity: peterd wandb_name: mitsu_full_borda gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 1 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 8e-6 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 20 eval_table_size: saves_per_epoch: 1 debug: deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json weight_decay: 0.0 special_tokens: pad_token: <|end_of_text|> ```

# workspace/llm_training/axolotl/llama3-multilingual-orpo/output_mitsu_full_borda This model is a fine-tuned version of [lightblue/suzume-llama-3-8B-multilingual](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1005 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.6836 | 0.01 | 1 | 7.6268 | | 3.9429 | 0.05 | 4 | 2.3993 | | 0.1193 | 0.1 | 8 | 0.1331 | | 0.1039 | 0.15 | 12 | 0.1209 | | 0.1082 | 0.2 | 16 | 0.1189 | | 0.1209 | 0.25 | 20 | 0.1180 | | 0.1106 | 0.3 | 24 | 0.1157 | | 0.103 | 0.35 | 28 | 0.1156 | | 0.1141 | 0.41 | 32 | 0.1123 | | 0.1156 | 0.46 | 36 | 0.1104 | | 0.0925 | 0.51 | 40 | 0.1089 | | 0.1113 | 0.56 | 44 | 0.1052 | | 0.1146 | 0.61 | 48 | 0.1073 | | 0.1029 | 0.66 | 52 | 0.1086 | | 0.1198 | 0.71 | 56 | 0.1072 | | 0.1205 | 0.76 | 60 | 0.1062 | | 0.1209 | 0.81 | 64 | 0.1041 | | 0.1047 | 0.86 | 68 | 0.1020 | | 0.0798 | 0.91 | 72 | 0.1008 | | 0.1007 | 0.96 | 76 | 0.1005 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.0