---
license: other
base_model: lightblue/suzume-llama-3-8B-multilingual
tags:
- generated_from_trainer
model-index:
- name: workspace/llm_training/axolotl/llama3-multilingual-orpo/output_mitsu_full_borda
results: []
---
[
](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.0`
```yaml
base_model: lightblue/suzume-llama-3-8B-multilingual
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer # PreTrainedTokenizerFast
load_in_8bit: false
load_in_4bit: false
strict: false
rl: orpo
orpo_alpha: 0.1
remove_unused_columns: false
chat_template: chatml
datasets:
- path: lightblue/mitsu_full_borda
type: orpo.chat_template
conversation: llama-3
dataset_prepared_path: /workspace/llm_training/axolotl/llama3-multilingual-orpo/prepared_mitsu_full_borda
val_set_size: 0.02
output_dir: /workspace/llm_training/axolotl/llama3-multilingual-orpo/output_mitsu_full_borda
sequence_len: 8192
sample_packing: false
pad_to_sequence_len: true
use_wandb: true
wandb_project: axolotl
wandb_entity: peterd
wandb_name: mitsu_full_borda
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 8e-6
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 20
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.0
special_tokens:
pad_token: <|end_of_text|>
```
# workspace/llm_training/axolotl/llama3-multilingual-orpo/output_mitsu_full_borda
This model is a fine-tuned version of [lightblue/suzume-llama-3-8B-multilingual](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1005
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 7.6836 | 0.01 | 1 | 7.6268 |
| 3.9429 | 0.05 | 4 | 2.3993 |
| 0.1193 | 0.1 | 8 | 0.1331 |
| 0.1039 | 0.15 | 12 | 0.1209 |
| 0.1082 | 0.2 | 16 | 0.1189 |
| 0.1209 | 0.25 | 20 | 0.1180 |
| 0.1106 | 0.3 | 24 | 0.1157 |
| 0.103 | 0.35 | 28 | 0.1156 |
| 0.1141 | 0.41 | 32 | 0.1123 |
| 0.1156 | 0.46 | 36 | 0.1104 |
| 0.0925 | 0.51 | 40 | 0.1089 |
| 0.1113 | 0.56 | 44 | 0.1052 |
| 0.1146 | 0.61 | 48 | 0.1073 |
| 0.1029 | 0.66 | 52 | 0.1086 |
| 0.1198 | 0.71 | 56 | 0.1072 |
| 0.1205 | 0.76 | 60 | 0.1062 |
| 0.1209 | 0.81 | 64 | 0.1041 |
| 0.1047 | 0.86 | 68 | 0.1020 |
| 0.0798 | 0.91 | 72 | 0.1008 |
| 0.1007 | 0.96 | 76 | 0.1005 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.0