File size: 7,013 Bytes
486b4e9
377123e
486b4e9
 
 
377123e
486b4e9
 
 
 
 
377123e
 
7bb98c1
c5cbc87
e6913be
01f76aa
5973cfd
01f76aa
 
9970537
 
 
486b4e9
 
8ea34cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5973cfd
8ea34cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
730f2fe
 
8ea34cb
730f2fe
 
 
8ea34cb
730f2fe
 
 
 
 
 
8ea34cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5973cfd
8ea34cb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
---

language:
- en
- el

tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers


widget:
- source_sentence: "Το κινητό έπεσε και έσπασε."
  sentences: [
				"H πτώση κατέστρεψε τη συσκευή.",
				"Το αυτοκίνητο έσπασε στα δυο.",
				"Ο υπουργός έπεσε και έσπασε το πόδι του."
			]

pipeline_tag: sentence-similarity

license: apache-2.0
---

# Semantic Textual Similarity for the Greek language using Transformers and Transfer Learning
### By the Hellenic Army Academy (SSE) and the Technical University of Crete (TUC)


This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

We follow a Teacher-Student transfer learning approach described [here](https://www.sbert.net/examples/training/multilingual/README.html) to train an XLM-Roberta-base model on STS using parallel EN-EL sentence pairs.

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('{MODEL_NAME}')

sentences1 = ['Το κινητό έπεσε και έσπασε.',
             'Το κινητό έπεσε και έσπασε.',
             'Το κινητό έπεσε και έσπασε.']

sentences2 = ["H πτώση κατέστρεψε τη συσκευή.",
             "Το αυτοκίνητο έσπασε στα δυο.",
             "Ο υπουργός έπεσε και έσπασε το πόδι του."]


embeddings1 = model.encode(sentences1, convert_to_tensor=True)
embeddings2 = model.encode(sentences2, convert_to_tensor=True)

#Compute cosine-similarities (clone repo for util functions)
from sentence_transformers import util
cosine_scores = util.pytorch_cos_sim(embeddings1, embeddings2)

#Output the pairs with their score
for i in range(len(sentences1)):
    print("{} 		 {} 		 Score: {:.4f}".format(sentences1[i], sentences2[i], cosine_scores[i][i]))
    
#Outputs:
#Το κινητό έπεσε και έσπασε. 		 H πτώση κατέστρεψε τη συσκευή. 		 Score: 0.6741
#Το κινητό έπεσε και έσπασε. 		 Το αυτοκίνητο έσπασε στα δυο. 		 Score: 0.5067
#Το κινητό έπεσε και έσπασε. 		 Ο υπουργός έπεσε και έσπασε το πόδι του. 		 Score: 0.4548

```



## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

```python
from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained(

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)
```



## Evaluation Results

#### Similarity Evaluation on STS.en-el.txt (translated manually for evaluation purposes)
We measure the semantic textual similarity (STS) between sentence pairs in different languages:

| cosine_pearson | cosine_spearman | euclidean_pearson | euclidean_spearman | manhattan_pearson | manhattan_spearman | dot_pearson | dot_spearman |
| ----------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- |
0.834474802920369 | 0.845687403828107 | 0.815895882192263 | 0.81084300966291 | 0.816333562677654 | 0.813879742416394 | 0.7945167996031 | 0.802604238383742 |

#### Translation
We measure the translation accuracy. Given a list with source sentences, for example, 1000 English sentences. And a list with matching target (translated) sentences, for example, 1000 Greek sentences. For each sentence pair, we check if their embeddings are the closest using cosine similarity. I.e., for each src_sentences[i] we check if trg_sentences[i] has the highest similarity out of all target sentences. If this is the case, we have a hit, otherwise an error. This evaluator reports accuracy (higher = better).

| src2trg | trg2src |
| ----------- | ----------- |
| 0.981 |	0.9775 | 

## Training
The model was trained with the parameters:

**DataLoader**:

`torch.utils.data.dataloader.DataLoader` of length 135121 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```

**Loss**:

`sentence_transformers.losses.MSELoss.MSELoss` 

Parameters of the fit()-Method:
```
{
    "callback": null,
    "epochs": 4,
    "evaluation_steps": 1000,
    "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'transformers.optimization.AdamW'>",
    "optimizer_params": {
        "correct_bias": false,
        "eps": 1e-06,
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 10000,
    "weight_decay": 0.01
}
```


## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 400, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```

## Acknowledgement
The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number:50, 2nd call)



## Citing & Authors
Citation info for Greek model: TBD

Based on the transfer learning approach of [Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation](https://arxiv.org/abs/2004.09813)