File size: 7,013 Bytes
486b4e9 377123e 486b4e9 377123e 486b4e9 377123e 7bb98c1 c5cbc87 e6913be 01f76aa 5973cfd 01f76aa 9970537 486b4e9 8ea34cb 5973cfd 8ea34cb 730f2fe 8ea34cb 730f2fe 8ea34cb 730f2fe 8ea34cb 5973cfd 8ea34cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
---
language:
- en
- el
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
widget:
- source_sentence: "Το κινητό έπεσε και έσπασε."
sentences: [
"H πτώση κατέστρεψε τη συσκευή.",
"Το αυτοκίνητο έσπασε στα δυο.",
"Ο υπουργός έπεσε και έσπασε το πόδι του."
]
pipeline_tag: sentence-similarity
license: apache-2.0
---
# Semantic Textual Similarity for the Greek language using Transformers and Transfer Learning
### By the Hellenic Army Academy (SSE) and the Technical University of Crete (TUC)
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
We follow a Teacher-Student transfer learning approach described [here](https://www.sbert.net/examples/training/multilingual/README.html) to train an XLM-Roberta-base model on STS using parallel EN-EL sentence pairs.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('{MODEL_NAME}')
sentences1 = ['Το κινητό έπεσε και έσπασε.',
'Το κινητό έπεσε και έσπασε.',
'Το κινητό έπεσε και έσπασε.']
sentences2 = ["H πτώση κατέστρεψε τη συσκευή.",
"Το αυτοκίνητο έσπασε στα δυο.",
"Ο υπουργός έπεσε και έσπασε το πόδι του."]
embeddings1 = model.encode(sentences1, convert_to_tensor=True)
embeddings2 = model.encode(sentences2, convert_to_tensor=True)
#Compute cosine-similarities (clone repo for util functions)
from sentence_transformers import util
cosine_scores = util.pytorch_cos_sim(embeddings1, embeddings2)
#Output the pairs with their score
for i in range(len(sentences1)):
print("{} {} Score: {:.4f}".format(sentences1[i], sentences2[i], cosine_scores[i][i]))
#Outputs:
#Το κινητό έπεσε και έσπασε. H πτώση κατέστρεψε τη συσκευή. Score: 0.6741
#Το κινητό έπεσε και έσπασε. Το αυτοκίνητο έσπασε στα δυο. Score: 0.5067
#Το κινητό έπεσε και έσπασε. Ο υπουργός έπεσε και έσπασε το πόδι του. Score: 0.4548
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained(
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
#### Similarity Evaluation on STS.en-el.txt (translated manually for evaluation purposes)
We measure the semantic textual similarity (STS) between sentence pairs in different languages:
| cosine_pearson | cosine_spearman | euclidean_pearson | euclidean_spearman | manhattan_pearson | manhattan_spearman | dot_pearson | dot_spearman |
| ----------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- |
0.834474802920369 | 0.845687403828107 | 0.815895882192263 | 0.81084300966291 | 0.816333562677654 | 0.813879742416394 | 0.7945167996031 | 0.802604238383742 |
#### Translation
We measure the translation accuracy. Given a list with source sentences, for example, 1000 English sentences. And a list with matching target (translated) sentences, for example, 1000 Greek sentences. For each sentence pair, we check if their embeddings are the closest using cosine similarity. I.e., for each src_sentences[i] we check if trg_sentences[i] has the highest similarity out of all target sentences. If this is the case, we have a hit, otherwise an error. This evaluator reports accuracy (higher = better).
| src2trg | trg2src |
| ----------- | ----------- |
| 0.981 | 0.9775 |
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 135121 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.MSELoss.MSELoss`
Parameters of the fit()-Method:
```
{
"callback": null,
"epochs": 4,
"evaluation_steps": 1000,
"evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"correct_bias": false,
"eps": 1e-06,
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 10000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 400, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Acknowledgement
The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number:50, 2nd call)
## Citing & Authors
Citation info for Greek model: TBD
Based on the transfer learning approach of [Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation](https://arxiv.org/abs/2004.09813)
|