--- language: - en - el tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - allnli widget: - source_sentence: "Το κινητό έπεσε και έσπασε." sentences: [ "H πτώση κατέστρεψε τη συσκευή.", "Το αυτοκίνητο έσπασε στα δυο", "Ο υπουργός έπεσε και έσπασε το πόδι του." ] pipeline_tag: sentence-similarity license: apache-2.0 --- # Semantic Textual Similarity for the Greek language using Transformers and Transfer Learning ### By the Hellenic Army Academy (SSE) and the Technical University of Crete (TUC) This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. We follow a Teacher-Student transfer learning approach described [here](https://www.sbert.net/examples/training/multilingual/README.html) to train an XLM-Roberta-base model on STS using parallel EN-EL sentence pairs. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('{MODEL_NAME}') sentences1 = ['Το κινητό έπεσε και έσπασε.', 'Το κινητό έπεσε και έσπασε.', 'Το κινητό έπεσε και έσπασε.'] sentences2 = ["H πτώση κατέστρεψε τη συσκευή.", "Το αυτοκίνητο έσπασε στα δυο.", "Ο υπουργός έπεσε και έσπασε το πόδι του."] embeddings1 = model.encode(sentences1, convert_to_tensor=True) embeddings2 = model.encode(sentences2, convert_to_tensor=True) embeddings1 = model.encode(sentences1, convert_to_tensor=True) embeddings2 = model.encode(sentences2, convert_to_tensor=True) #Compute cosine-similarities (clone repo for util functions) from sentence_transformers import util cosine_scores = util.pytorch_cos_sim(embeddings1, embeddings2) #Output the pairs with their score for i in range(len(sentences1)): print("{} \t\t {} \t\t Score: {:.4f}".format(sentences1[i], sentences2[i], cosine_scores[i][i])) #Outputs: #Το κινητό έπεσε και έσπασε. H πτώση κατέστρεψε τη συσκευή. Score: 0.6741 #Το κινητό έπεσε και έσπασε. Το αυτοκίνητο έσπασε στα δυο. Score: 0.5067 #Το κινητό έπεσε και έσπασε. Ο υπουργός έπεσε και έσπασε το πόδι του. Score: 0.4548 ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained( # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 135121 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 4, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "", "optimizer_params": { "correct_bias": false, "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 400, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Acknowledgement The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number:50, 2nd call) ## Citing & Authors Citation info of Greek model: TBD Based on the transfer learning approach of [Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation](https://arxiv.org/abs/2004.09813)