File size: 2,363 Bytes
b6887bd
e188f5a
 
 
b6887bd
 
 
 
e188f5a
 
b6887bd
 
 
 
e188f5a
 
 
 
 
 
 
 
 
 
 
b6887bd
 
 
 
 
 
 
e188f5a
b6887bd
e188f5a
 
 
b6887bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
language:
- de
- en
license: apache-2.0
base_model: google/mt5-small
tags:
- generated_from_trainer
datasets:
- lilferrit/wmt14-short
metrics:
- bleu
model-index:
- name: ft-wmt14-5
  results:
  - task:
      name: Translation
      type: translation
    dataset:
      name: lilferrit/wmt14-short
      type: lilferrit/wmt14-short
    metrics:
    - name: Bleu
      type: bleu
      value: 20.7584
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ft-wmt14-5

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the lilferrit/wmt14-short dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0604
- Bleu: 20.7584
- Gen Len: 30.499

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adafactor
- lr_scheduler_type: constant
- training_steps: 100000

### Training results

| Training Loss | Epoch  | Step   | Bleu    | Gen Len | Validation Loss |
|:-------------:|:------:|:------:|:-------:|:-------:|:---------------:|
| 1.9166        | 0.2778 | 10000  | 15.8119 | 32.097  | 2.3105          |
| 1.7184        | 0.5556 | 20000  | 17.5903 | 31.1153 | 2.1993          |
| 1.6061        | 0.8333 | 30000  | 18.9604 | 30.327  | 2.1380          |
| 1.516         | 1.1111 | 40000  | 19.1444 | 30.2727 | 2.1366          |
| 1.4675        | 1.3889 | 50000  | 19.7588 | 30.1127 | 2.1208          |
| 1.4416        | 1.6667 | 60000  | 19.9263 | 30.4463 | 2.0889          |
| 1.4111        | 1.9444 | 70000  | 2.0795  | 20.3323 | 30.1207         |
| 1.3603        | 2.2222 | 80000  | 2.0850  | 20.5373 | 30.5943         |
| 1.3378        | 2.5    | 90000  | 2.0604  | 20.7584 | 30.499          |
| 1.3381        | 2.7778 | 100000 | 2.0597  | 20.6113 | 30.701          |


### Framework versions

- Transformers 4.40.0
- Pytorch 2.2.2+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1