lilyyellow
commited on
Commit
•
93970f5
1
Parent(s):
3c8802f
End of training
Browse files- README.md +23 -29
- config.json +50 -58
- model.safetensors +2 -2
- training_args.bin +1 -1
README.md
CHANGED
@@ -14,25 +14,23 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
|
15 |
This model is a fine-tuned version of [NlpHUST/ner-vietnamese-electra-base](https://huggingface.co/NlpHUST/ner-vietnamese-electra-base) on an unknown dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss: 0.
|
18 |
-
- Age: {'precision': 0.
|
19 |
-
- Datetime: {'precision': 0.
|
20 |
-
- Disease: {'precision': 0.
|
21 |
-
- Event: {'precision': 0.
|
22 |
-
- Gender: {'precision': 0.
|
23 |
-
- Law: {'precision': 0.
|
24 |
-
- Location: {'precision': 0.
|
25 |
-
- Organization: {'precision': 0.
|
26 |
-
- Person: {'precision': 0.
|
27 |
-
-
|
28 |
-
-
|
29 |
-
-
|
30 |
-
-
|
31 |
-
-
|
32 |
-
- Overall
|
33 |
-
- Overall
|
34 |
-
- Overall F1: 0.6663
|
35 |
-
- Overall Accuracy: 0.8887
|
36 |
|
37 |
## Model description
|
38 |
|
@@ -52,22 +50,18 @@ More information needed
|
|
52 |
|
53 |
The following hyperparameters were used during training:
|
54 |
- learning_rate: 5e-05
|
55 |
-
- train_batch_size:
|
56 |
-
- eval_batch_size:
|
57 |
- seed: 42
|
58 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
- lr_scheduler_type: linear
|
60 |
-
- num_epochs:
|
61 |
|
62 |
### Training results
|
63 |
|
64 |
-
| Training Loss | Epoch | Step
|
65 |
-
|
66 |
-
| 0.
|
67 |
-
| 0.2032 | 3.9983 | 4626 | 0.3906 | {'precision': 0.8741258741258742, 'recall': 0.946969696969697, 'f1': 0.9090909090909091, 'number': 132} | {'precision': 0.7048710601719198, 'recall': 0.75, 'f1': 0.7267355982274742, 'number': 984} | {'precision': 0.6943396226415094, 'recall': 0.6501766784452296, 'f1': 0.6715328467153284, 'number': 283} | {'precision': 0.3344370860927152, 'recall': 0.38257575757575757, 'f1': 0.3568904593639575, 'number': 264} | {'precision': 0.8214285714285714, 'recall': 0.8070175438596491, 'f1': 0.8141592920353982, 'number': 114} | {'precision': 0.547112462006079, 'recall': 0.7114624505928854, 'f1': 0.6185567010309279, 'number': 253} | {'precision': 0.7110286320254506, 'recall': 0.7331875341716785, 'f1': 0.7219380888290713, 'number': 1829} | {'precision': 0.623030303030303, 'recall': 0.7306325515280739, 'f1': 0.6725547922800131, 'number': 1407} | {'precision': 0.6707482993197279, 'recall': 0.7391304347826086, 'f1': 0.7032810271041369, 'number': 1334} | {'precision': 0.9156626506024096, 'recall': 0.9743589743589743, 'f1': 0.9440993788819876, 'number': 78} | {'precision': 0.38738738738738737, 'recall': 0.3359375, 'f1': 0.3598326359832636, 'number': 256} | {'precision': 0.5631399317406144, 'recall': 0.6066176470588235, 'f1': 0.584070796460177, 'number': 544} | {'precision': 0.43454545454545457, 'recall': 0.4605009633911368, 'f1': 0.44714686623012156, 'number': 519} | {'precision': 0.5153374233128835, 'recall': 0.6086956521739131, 'f1': 0.5581395348837209, 'number': 138} | 0.6347 | 0.6872 | 0.6599 | 0.8900 |
|
68 |
-
| 0.138 | 5.9974 | 6939 | 0.4454 | {'precision': 0.8299319727891157, 'recall': 0.9242424242424242, 'f1': 0.8745519713261649, 'number': 132} | {'precision': 0.7272727272727273, 'recall': 0.7479674796747967, 'f1': 0.7374749498997997, 'number': 984} | {'precision': 0.7192307692307692, 'recall': 0.6607773851590106, 'f1': 0.6887661141804788, 'number': 283} | {'precision': 0.32113821138211385, 'recall': 0.29924242424242425, 'f1': 0.30980392156862746, 'number': 264} | {'precision': 0.8103448275862069, 'recall': 0.8245614035087719, 'f1': 0.8173913043478261, 'number': 114} | {'precision': 0.5620915032679739, 'recall': 0.6798418972332015, 'f1': 0.6153846153846154, 'number': 253} | {'precision': 0.7173678532901834, 'recall': 0.7271733187534172, 'f1': 0.7222373065435785, 'number': 1829} | {'precision': 0.6416717885679164, 'recall': 0.7420042643923241, 'f1': 0.6882003955174687, 'number': 1407} | {'precision': 0.678254942058623, 'recall': 0.7458770614692654, 'f1': 0.7104605498036416, 'number': 1334} | {'precision': 0.8444444444444444, 'recall': 0.9743589743589743, 'f1': 0.9047619047619048, 'number': 78} | {'precision': 0.40358744394618834, 'recall': 0.3515625, 'f1': 0.3757828810020877, 'number': 256} | {'precision': 0.5023041474654378, 'recall': 0.6011029411764706, 'f1': 0.5472803347280336, 'number': 544} | {'precision': 0.4894433781190019, 'recall': 0.4913294797687861, 'f1': 0.49038461538461536, 'number': 519} | {'precision': 0.49696969696969695, 'recall': 0.5942028985507246, 'f1': 0.5412541254125411, 'number': 138} | 0.6435 | 0.6870 | 0.6646 | 0.8883 |
|
69 |
-
| 0.0864 | 7.9965 | 9252 | 0.5145 | {'precision': 0.8299319727891157, 'recall': 0.9242424242424242, 'f1': 0.8745519713261649, 'number': 132} | {'precision': 0.7032442748091603, 'recall': 0.7489837398373984, 'f1': 0.7253937007874016, 'number': 984} | {'precision': 0.7007575757575758, 'recall': 0.6537102473498233, 'f1': 0.676416819012797, 'number': 283} | {'precision': 0.3114754098360656, 'recall': 0.35984848484848486, 'f1': 0.3339191564147628, 'number': 264} | {'precision': 0.7833333333333333, 'recall': 0.8245614035087719, 'f1': 0.8034188034188033, 'number': 114} | {'precision': 0.5866666666666667, 'recall': 0.6956521739130435, 'f1': 0.6365280289330922, 'number': 253} | {'precision': 0.7332242225859247, 'recall': 0.7348277747402953, 'f1': 0.7340251228836702, 'number': 1829} | {'precision': 0.6387176325524044, 'recall': 0.736318407960199, 'f1': 0.6840541432816111, 'number': 1407} | {'precision': 0.686013986013986, 'recall': 0.7353823088455772, 'f1': 0.7098408104196816, 'number': 1334} | {'precision': 0.8837209302325582, 'recall': 0.9743589743589743, 'f1': 0.9268292682926831, 'number': 78} | {'precision': 0.4186991869918699, 'recall': 0.40234375, 'f1': 0.41035856573705176, 'number': 256} | {'precision': 0.5604026845637584, 'recall': 0.6139705882352942, 'f1': 0.5859649122807018, 'number': 544} | {'precision': 0.4489112227805695, 'recall': 0.5163776493256262, 'f1': 0.48028673835125446, 'number': 519} | {'precision': 0.47752808988764045, 'recall': 0.6159420289855072, 'f1': 0.5379746835443038, 'number': 138} | 0.6425 | 0.6928 | 0.6667 | 0.8880 |
|
70 |
-
| 0.0665 | 9.9957 | 11565 | 0.5631 | {'precision': 0.8356164383561644, 'recall': 0.9242424242424242, 'f1': 0.8776978417266188, 'number': 132} | {'precision': 0.7099903006789525, 'recall': 0.7439024390243902, 'f1': 0.7265508684863523, 'number': 984} | {'precision': 0.7104247104247104, 'recall': 0.6501766784452296, 'f1': 0.6789667896678967, 'number': 283} | {'precision': 0.2966666666666667, 'recall': 0.3371212121212121, 'f1': 0.31560283687943264, 'number': 264} | {'precision': 0.775, 'recall': 0.8157894736842105, 'f1': 0.7948717948717949, 'number': 114} | {'precision': 0.6129032258064516, 'recall': 0.6758893280632411, 'f1': 0.6428571428571429, 'number': 253} | {'precision': 0.7188841201716738, 'recall': 0.7326407873154729, 'f1': 0.7256972650961276, 'number': 1829} | {'precision': 0.64702154626109, 'recall': 0.7256574271499645, 'f1': 0.6840871021775545, 'number': 1407} | {'precision': 0.697508896797153, 'recall': 0.7346326836581709, 'f1': 0.7155896312522818, 'number': 1334} | {'precision': 0.8735632183908046, 'recall': 0.9743589743589743, 'f1': 0.9212121212121213, 'number': 78} | {'precision': 0.43661971830985913, 'recall': 0.36328125, 'f1': 0.3965884861407249, 'number': 256} | {'precision': 0.5562913907284768, 'recall': 0.6176470588235294, 'f1': 0.5853658536585366, 'number': 544} | {'precision': 0.458477508650519, 'recall': 0.5105973025048169, 'f1': 0.4831358249772105, 'number': 519} | {'precision': 0.49710982658959535, 'recall': 0.6231884057971014, 'f1': 0.5530546623794212, 'number': 138} | 0.6470 | 0.6869 | 0.6663 | 0.8887 |
|
71 |
|
72 |
|
73 |
### Framework versions
|
|
|
14 |
|
15 |
This model is a fine-tuned version of [NlpHUST/ner-vietnamese-electra-base](https://huggingface.co/NlpHUST/ner-vietnamese-electra-base) on an unknown dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.3274
|
18 |
+
- Age: {'precision': 0.9069767441860465, 'recall': 0.8731343283582089, 'f1': 0.8897338403041826, 'number': 134}
|
19 |
+
- Datetime: {'precision': 0.6740947075208914, 'recall': 0.7355623100303952, 'f1': 0.7034883720930233, 'number': 987}
|
20 |
+
- Disease: {'precision': 0.6631944444444444, 'recall': 0.7290076335877863, 'f1': 0.6945454545454546, 'number': 262}
|
21 |
+
- Event: {'precision': 0.290625, 'recall': 0.33214285714285713, 'f1': 0.31, 'number': 280}
|
22 |
+
- Gender: {'precision': 0.8266666666666667, 'recall': 0.7126436781609196, 'f1': 0.7654320987654321, 'number': 87}
|
23 |
+
- Law: {'precision': 0.5854430379746836, 'recall': 0.7254901960784313, 'f1': 0.647985989492119, 'number': 255}
|
24 |
+
- Location: {'precision': 0.6700662927078022, 'recall': 0.732033426183844, 'f1': 0.6996805111821087, 'number': 1795}
|
25 |
+
- Organization: {'precision': 0.5947934352009054, 'recall': 0.6946463978849967, 'f1': 0.6408536585365853, 'number': 1513}
|
26 |
+
- Person: {'precision': 0.6908841672378341, 'recall': 0.7251798561151079, 'f1': 0.7076167076167076, 'number': 1390}
|
27 |
+
- Quantity: {'precision': 0.5075528700906344, 'recall': 0.5936395759717314, 'f1': 0.5472312703583061, 'number': 566}
|
28 |
+
- Role: {'precision': 0.465818759936407, 'recall': 0.5356489945155393, 'f1': 0.49829931972789115, 'number': 547}
|
29 |
+
- Transportation: {'precision': 0.46153846153846156, 'recall': 0.5217391304347826, 'f1': 0.4897959183673469, 'number': 115}
|
30 |
+
- Overall Precision: 0.6168
|
31 |
+
- Overall Recall: 0.6854
|
32 |
+
- Overall F1: 0.6493
|
33 |
+
- Overall Accuracy: 0.8998
|
|
|
|
|
34 |
|
35 |
## Model description
|
36 |
|
|
|
50 |
|
51 |
The following hyperparameters were used during training:
|
52 |
- learning_rate: 5e-05
|
53 |
+
- train_batch_size: 32
|
54 |
+
- eval_batch_size: 32
|
55 |
- seed: 42
|
56 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
57 |
- lr_scheduler_type: linear
|
58 |
+
- num_epochs: 2
|
59 |
|
60 |
### Training results
|
61 |
|
62 |
+
| Training Loss | Epoch | Step | Validation Loss | Age | Datetime | Disease | Event | Gender | Law | Location | Organization | Person | Quantity | Role | Transportation | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
63 |
+
|:-------------:|:------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
64 |
+
| 0.2854 | 1.9965 | 1156 | 0.3274 | {'precision': 0.9069767441860465, 'recall': 0.8731343283582089, 'f1': 0.8897338403041826, 'number': 134} | {'precision': 0.6740947075208914, 'recall': 0.7355623100303952, 'f1': 0.7034883720930233, 'number': 987} | {'precision': 0.6631944444444444, 'recall': 0.7290076335877863, 'f1': 0.6945454545454546, 'number': 262} | {'precision': 0.290625, 'recall': 0.33214285714285713, 'f1': 0.31, 'number': 280} | {'precision': 0.8266666666666667, 'recall': 0.7126436781609196, 'f1': 0.7654320987654321, 'number': 87} | {'precision': 0.5854430379746836, 'recall': 0.7254901960784313, 'f1': 0.647985989492119, 'number': 255} | {'precision': 0.6700662927078022, 'recall': 0.732033426183844, 'f1': 0.6996805111821087, 'number': 1795} | {'precision': 0.5947934352009054, 'recall': 0.6946463978849967, 'f1': 0.6408536585365853, 'number': 1513} | {'precision': 0.6908841672378341, 'recall': 0.7251798561151079, 'f1': 0.7076167076167076, 'number': 1390} | {'precision': 0.5075528700906344, 'recall': 0.5936395759717314, 'f1': 0.5472312703583061, 'number': 566} | {'precision': 0.465818759936407, 'recall': 0.5356489945155393, 'f1': 0.49829931972789115, 'number': 547} | {'precision': 0.46153846153846156, 'recall': 0.5217391304347826, 'f1': 0.4897959183673469, 'number': 115} | 0.6168 | 0.6854 | 0.6493 | 0.8998 |
|
|
|
|
|
|
|
|
|
65 |
|
66 |
|
67 |
### Framework versions
|
config.json
CHANGED
@@ -11,68 +11,60 @@
|
|
11 |
"hidden_dropout_prob": 0.1,
|
12 |
"hidden_size": 768,
|
13 |
"id2label": {
|
14 |
-
"0": "I-
|
15 |
-
"1": "B-
|
16 |
-
"2": "
|
17 |
-
"3": "
|
18 |
-
"4": "B-
|
19 |
-
"5": "
|
20 |
-
"6": "
|
21 |
-
"7": "I-
|
22 |
-
"8": "
|
23 |
-
"9": "
|
24 |
-
"10": "
|
25 |
-
"11": "
|
26 |
-
"12": "
|
27 |
-
"13": "
|
28 |
-
"14": "I-
|
29 |
-
"15": "
|
30 |
-
"16": "B-
|
31 |
-
"17": "B-
|
32 |
-
"18": "I-
|
33 |
-
"19": "
|
34 |
-
"20": "I-
|
35 |
-
"21": "
|
36 |
-
"22": "B-
|
37 |
-
"23": "
|
38 |
-
"24": "
|
39 |
-
"25": "I-PHONE",
|
40 |
-
"26": "I-EVENT",
|
41 |
-
"27": "B-TRANSPORTATION",
|
42 |
-
"28": "I-ORGANIZATION"
|
43 |
},
|
44 |
"initializer_range": 0.02,
|
45 |
"intermediate_size": 3072,
|
46 |
"label2id": {
|
47 |
-
"B-AGE":
|
48 |
-
"B-DATETIME":
|
49 |
-
"B-DISEASE":
|
50 |
-
"B-EVENT":
|
51 |
-
"B-GENDER":
|
52 |
-
"B-LAW":
|
53 |
-
"B-LOCATION":
|
54 |
-
"B-ORGANIZATION":
|
55 |
-
"B-PERSON":
|
56 |
-
"B-
|
57 |
-
"B-
|
58 |
-
"B-
|
59 |
-
"
|
60 |
-
"
|
61 |
-
"I-
|
62 |
-
"I-
|
63 |
-
"I-
|
64 |
-
"I-
|
65 |
-
"I-
|
66 |
-
"I-
|
67 |
-
"I-
|
68 |
-
"I-
|
69 |
-
"I-
|
70 |
-
"I-
|
71 |
-
"
|
72 |
-
"I-QUANTITY": 24,
|
73 |
-
"I-ROLE": 14,
|
74 |
-
"I-TRANSPORTATION": 18,
|
75 |
-
"O": 3
|
76 |
},
|
77 |
"layer_norm_eps": 1e-12,
|
78 |
"max_position_embeddings": 512,
|
|
|
11 |
"hidden_dropout_prob": 0.1,
|
12 |
"hidden_size": 768,
|
13 |
"id2label": {
|
14 |
+
"0": "I-GENDER",
|
15 |
+
"1": "B-LAW",
|
16 |
+
"2": "B-QUANTITY",
|
17 |
+
"3": "B-PERSON",
|
18 |
+
"4": "B-AGE",
|
19 |
+
"5": "I-QUANTITY",
|
20 |
+
"6": "I-LOCATION",
|
21 |
+
"7": "I-DATETIME",
|
22 |
+
"8": "I-ROLE",
|
23 |
+
"9": "I-DISEASE",
|
24 |
+
"10": "I-LAW",
|
25 |
+
"11": "B-GENDER",
|
26 |
+
"12": "B-EVENT",
|
27 |
+
"13": "O",
|
28 |
+
"14": "I-AGE",
|
29 |
+
"15": "B-LOCATION",
|
30 |
+
"16": "B-DISEASE",
|
31 |
+
"17": "B-ORGANIZATION",
|
32 |
+
"18": "I-ORGANIZATION",
|
33 |
+
"19": "B-TRANSPORTATION",
|
34 |
+
"20": "I-EVENT",
|
35 |
+
"21": "I-TRANSPORTATION",
|
36 |
+
"22": "B-ROLE",
|
37 |
+
"23": "I-PERSON",
|
38 |
+
"24": "B-DATETIME"
|
|
|
|
|
|
|
|
|
39 |
},
|
40 |
"initializer_range": 0.02,
|
41 |
"intermediate_size": 3072,
|
42 |
"label2id": {
|
43 |
+
"B-AGE": 4,
|
44 |
+
"B-DATETIME": 24,
|
45 |
+
"B-DISEASE": 16,
|
46 |
+
"B-EVENT": 12,
|
47 |
+
"B-GENDER": 11,
|
48 |
+
"B-LAW": 1,
|
49 |
+
"B-LOCATION": 15,
|
50 |
+
"B-ORGANIZATION": 17,
|
51 |
+
"B-PERSON": 3,
|
52 |
+
"B-QUANTITY": 2,
|
53 |
+
"B-ROLE": 22,
|
54 |
+
"B-TRANSPORTATION": 19,
|
55 |
+
"I-AGE": 14,
|
56 |
+
"I-DATETIME": 7,
|
57 |
+
"I-DISEASE": 9,
|
58 |
+
"I-EVENT": 20,
|
59 |
+
"I-GENDER": 0,
|
60 |
+
"I-LAW": 10,
|
61 |
+
"I-LOCATION": 6,
|
62 |
+
"I-ORGANIZATION": 18,
|
63 |
+
"I-PERSON": 23,
|
64 |
+
"I-QUANTITY": 5,
|
65 |
+
"I-ROLE": 8,
|
66 |
+
"I-TRANSPORTATION": 21,
|
67 |
+
"O": 13
|
|
|
|
|
|
|
|
|
68 |
},
|
69 |
"layer_norm_eps": 1e-12,
|
70 |
"max_position_embeddings": 512,
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b26586038bd2b6370113a5f2d06a12b8eb35624fe4e929cfae92d504da98387
|
3 |
+
size 532367844
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 5112
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae934c411f42ed098a94aabeb09d3540809d82ecba967735ddf10cefe14a36d7
|
3 |
size 5112
|