--- base_model: lilyyellow/my_awesome_ner-token_classification_v1.0.7-6 tags: - generated_from_trainer model-index: - name: my_awesome_ner-token_classification_v1.0.7-6 results: [] --- # my_awesome_ner-token_classification_v1.0.7-6 This model is a fine-tuned version of [lilyyellow/my_awesome_ner-token_classification_v1.0.7-6](https://huggingface.co/lilyyellow/my_awesome_ner-token_classification_v1.0.7-6) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3464 - Age: {'precision': 0.9153846153846154, 'recall': 0.8880597014925373, 'f1': 0.9015151515151514, 'number': 134} - Datetime: {'precision': 0.6675824175824175, 'recall': 0.7386018237082067, 'f1': 0.7012987012987013, 'number': 987} - Disease: {'precision': 0.6712328767123288, 'recall': 0.7480916030534351, 'f1': 0.7075812274368231, 'number': 262} - Event: {'precision': 0.28023598820059, 'recall': 0.3392857142857143, 'f1': 0.30694668820678517, 'number': 280} - Gender: {'precision': 0.6947368421052632, 'recall': 0.7586206896551724, 'f1': 0.7252747252747253, 'number': 87} - Law: {'precision': 0.5664556962025317, 'recall': 0.7019607843137254, 'f1': 0.626970227670753, 'number': 255} - Location: {'precision': 0.6860587002096437, 'recall': 0.7292479108635097, 'f1': 0.7069943289224953, 'number': 1795} - Organization: {'precision': 0.6145833333333334, 'recall': 0.7019167217448777, 'f1': 0.6553532860228325, 'number': 1513} - Person: {'precision': 0.6846725185685347, 'recall': 0.7294964028776978, 'f1': 0.7063740856844305, 'number': 1390} - Quantity: {'precision': 0.5110782865583456, 'recall': 0.6113074204946997, 'f1': 0.5567176186645212, 'number': 566} - Role: {'precision': 0.4672897196261682, 'recall': 0.5484460694698354, 'f1': 0.5046257359125315, 'number': 547} - Transportation: {'precision': 0.46, 'recall': 0.6, 'f1': 0.5207547169811321, 'number': 115} - Overall Precision: 0.6197 - Overall Recall: 0.6915 - Overall F1: 0.6536 - Overall Accuracy: 0.8962 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Age | Datetime | Disease | Event | Gender | Law | Location | Organization | Person | Quantity | Role | Transportation | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.2089 | 1.9965 | 1156 | 0.3464 | {'precision': 0.9153846153846154, 'recall': 0.8880597014925373, 'f1': 0.9015151515151514, 'number': 134} | {'precision': 0.6675824175824175, 'recall': 0.7386018237082067, 'f1': 0.7012987012987013, 'number': 987} | {'precision': 0.6712328767123288, 'recall': 0.7480916030534351, 'f1': 0.7075812274368231, 'number': 262} | {'precision': 0.28023598820059, 'recall': 0.3392857142857143, 'f1': 0.30694668820678517, 'number': 280} | {'precision': 0.6947368421052632, 'recall': 0.7586206896551724, 'f1': 0.7252747252747253, 'number': 87} | {'precision': 0.5664556962025317, 'recall': 0.7019607843137254, 'f1': 0.626970227670753, 'number': 255} | {'precision': 0.6860587002096437, 'recall': 0.7292479108635097, 'f1': 0.7069943289224953, 'number': 1795} | {'precision': 0.6145833333333334, 'recall': 0.7019167217448777, 'f1': 0.6553532860228325, 'number': 1513} | {'precision': 0.6846725185685347, 'recall': 0.7294964028776978, 'f1': 0.7063740856844305, 'number': 1390} | {'precision': 0.5110782865583456, 'recall': 0.6113074204946997, 'f1': 0.5567176186645212, 'number': 566} | {'precision': 0.4672897196261682, 'recall': 0.5484460694698354, 'f1': 0.5046257359125315, 'number': 547} | {'precision': 0.46, 'recall': 0.6, 'f1': 0.5207547169811321, 'number': 115} | 0.6197 | 0.6915 | 0.6536 | 0.8962 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1