lilyyellow commited on
Commit
686df16
1 Parent(s): 36e78a1

End of training

Browse files
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: lilyyellow/my_awesome_ner-token_classification_v1.0.7-6
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: my_awesome_ner-token_classification_v1.0.7-7
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # my_awesome_ner-token_classification_v1.0.7-7
14
+
15
+ This model is a fine-tuned version of [lilyyellow/my_awesome_ner-token_classification_v1.0.7-6](https://huggingface.co/lilyyellow/my_awesome_ner-token_classification_v1.0.7-6) on an unknown dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.4081
18
+ - Age: {'precision': 0.9147286821705426, 'recall': 0.8805970149253731, 'f1': 0.8973384030418251, 'number': 134}
19
+ - Datetime: {'precision': 0.6672862453531598, 'recall': 0.7274569402228976, 'f1': 0.696073679108095, 'number': 987}
20
+ - Disease: {'precision': 0.66, 'recall': 0.7557251908396947, 'f1': 0.7046263345195729, 'number': 262}
21
+ - Event: {'precision': 0.26356589147286824, 'recall': 0.36428571428571427, 'f1': 0.30584707646176906, 'number': 280}
22
+ - Gender: {'precision': 0.71, 'recall': 0.8160919540229885, 'f1': 0.7593582887700535, 'number': 87}
23
+ - Law: {'precision': 0.5474683544303798, 'recall': 0.6784313725490196, 'f1': 0.6059544658493871, 'number': 255}
24
+ - Location: {'precision': 0.679520583637311, 'recall': 0.7264623955431755, 'f1': 0.7022078621432417, 'number': 1795}
25
+ - Organization: {'precision': 0.6338028169014085, 'recall': 0.713813615333774, 'f1': 0.671433012123096, 'number': 1513}
26
+ - Person: {'precision': 0.6770972037283621, 'recall': 0.7316546762589928, 'f1': 0.7033195020746887, 'number': 1390}
27
+ - Quantity: {'precision': 0.5050215208034433, 'recall': 0.6219081272084805, 'f1': 0.557403008709422, 'number': 566}
28
+ - Role: {'precision': 0.456752655538695, 'recall': 0.5502742230347349, 'f1': 0.49917081260364843, 'number': 547}
29
+ - Transportation: {'precision': 0.4329268292682927, 'recall': 0.6173913043478261, 'f1': 0.5089605734767025, 'number': 115}
30
+ - Overall Precision: 0.6149
31
+ - Overall Recall: 0.6941
32
+ - Overall F1: 0.6521
33
+ - Overall Accuracy: 0.8912
34
+
35
+ ## Model description
36
+
37
+ More information needed
38
+
39
+ ## Intended uses & limitations
40
+
41
+ More information needed
42
+
43
+ ## Training and evaluation data
44
+
45
+ More information needed
46
+
47
+ ## Training procedure
48
+
49
+ ### Training hyperparameters
50
+
51
+ The following hyperparameters were used during training:
52
+ - learning_rate: 5e-05
53
+ - train_batch_size: 32
54
+ - eval_batch_size: 32
55
+ - seed: 42
56
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
57
+ - lr_scheduler_type: linear
58
+ - num_epochs: 2
59
+
60
+ ### Training results
61
+
62
+ | Training Loss | Epoch | Step | Validation Loss | Age | Datetime | Disease | Event | Gender | Law | Location | Organization | Person | Quantity | Role | Transportation | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
63
+ |:-------------:|:------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
64
+ | 0.158 | 1.9965 | 1156 | 0.4081 | {'precision': 0.9147286821705426, 'recall': 0.8805970149253731, 'f1': 0.8973384030418251, 'number': 134} | {'precision': 0.6672862453531598, 'recall': 0.7274569402228976, 'f1': 0.696073679108095, 'number': 987} | {'precision': 0.66, 'recall': 0.7557251908396947, 'f1': 0.7046263345195729, 'number': 262} | {'precision': 0.26356589147286824, 'recall': 0.36428571428571427, 'f1': 0.30584707646176906, 'number': 280} | {'precision': 0.71, 'recall': 0.8160919540229885, 'f1': 0.7593582887700535, 'number': 87} | {'precision': 0.5474683544303798, 'recall': 0.6784313725490196, 'f1': 0.6059544658493871, 'number': 255} | {'precision': 0.679520583637311, 'recall': 0.7264623955431755, 'f1': 0.7022078621432417, 'number': 1795} | {'precision': 0.6338028169014085, 'recall': 0.713813615333774, 'f1': 0.671433012123096, 'number': 1513} | {'precision': 0.6770972037283621, 'recall': 0.7316546762589928, 'f1': 0.7033195020746887, 'number': 1390} | {'precision': 0.5050215208034433, 'recall': 0.6219081272084805, 'f1': 0.557403008709422, 'number': 566} | {'precision': 0.456752655538695, 'recall': 0.5502742230347349, 'f1': 0.49917081260364843, 'number': 547} | {'precision': 0.4329268292682927, 'recall': 0.6173913043478261, 'f1': 0.5089605734767025, 'number': 115} | 0.6149 | 0.6941 | 0.6521 | 0.8912 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.41.2
70
+ - Pytorch 2.1.2
71
+ - Datasets 2.19.2
72
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "lilyyellow/my_awesome_ner-token_classification_v1.0.7-6",
3
+ "architectures": [
4
+ "ElectraForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "embedding_size": 768,
9
+ "finetuning_task": "ner",
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "I-GENDER",
15
+ "1": "B-LAW",
16
+ "2": "B-QUANTITY",
17
+ "3": "B-PERSON",
18
+ "4": "B-AGE",
19
+ "5": "I-QUANTITY",
20
+ "6": "I-LOCATION",
21
+ "7": "I-DATETIME",
22
+ "8": "I-ROLE",
23
+ "9": "I-DISEASE",
24
+ "10": "I-LAW",
25
+ "11": "B-GENDER",
26
+ "12": "B-EVENT",
27
+ "13": "O",
28
+ "14": "I-AGE",
29
+ "15": "B-LOCATION",
30
+ "16": "B-DISEASE",
31
+ "17": "B-ORGANIZATION",
32
+ "18": "I-ORGANIZATION",
33
+ "19": "B-TRANSPORTATION",
34
+ "20": "I-EVENT",
35
+ "21": "I-TRANSPORTATION",
36
+ "22": "B-ROLE",
37
+ "23": "I-PERSON",
38
+ "24": "B-DATETIME"
39
+ },
40
+ "initializer_range": 0.02,
41
+ "intermediate_size": 3072,
42
+ "label2id": {
43
+ "B-AGE": 4,
44
+ "B-DATETIME": 24,
45
+ "B-DISEASE": 16,
46
+ "B-EVENT": 12,
47
+ "B-GENDER": 11,
48
+ "B-LAW": 1,
49
+ "B-LOCATION": 15,
50
+ "B-ORGANIZATION": 17,
51
+ "B-PERSON": 3,
52
+ "B-QUANTITY": 2,
53
+ "B-ROLE": 22,
54
+ "B-TRANSPORTATION": 19,
55
+ "I-AGE": 14,
56
+ "I-DATETIME": 7,
57
+ "I-DISEASE": 9,
58
+ "I-EVENT": 20,
59
+ "I-GENDER": 0,
60
+ "I-LAW": 10,
61
+ "I-LOCATION": 6,
62
+ "I-ORGANIZATION": 18,
63
+ "I-PERSON": 23,
64
+ "I-QUANTITY": 5,
65
+ "I-ROLE": 8,
66
+ "I-TRANSPORTATION": 21,
67
+ "O": 13
68
+ },
69
+ "layer_norm_eps": 1e-12,
70
+ "max_position_embeddings": 512,
71
+ "model_type": "electra",
72
+ "num_attention_heads": 12,
73
+ "num_hidden_layers": 12,
74
+ "pad_token_id": 0,
75
+ "position_embedding_type": "absolute",
76
+ "summary_activation": "gelu",
77
+ "summary_last_dropout": 0.1,
78
+ "summary_type": "first",
79
+ "summary_use_proj": true,
80
+ "torch_dtype": "float32",
81
+ "transformers_version": "4.41.2",
82
+ "type_vocab_size": 2,
83
+ "use_cache": true,
84
+ "vocab_size": 62000
85
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98203a6b05fdd8addf71190b8342ea1dafdab521f519ab26105824d9e713253a
3
+ size 532367844
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 256,
50
+ "model_max_length": 1000000000000000019884624838656,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "ElectraTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7963b505f58f3b2ce00fd742b5870d28b7976c4f819394636a8493498eb4ec8
3
+ size 5112
vocab.txt ADDED
The diff for this file is too large to render. See raw diff