File size: 1,966 Bytes
120494d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c834fd8
 
 
 
 
120494d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c834fd8
120494d
 
 
c834fd8
 
 
 
 
 
 
120494d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
base_model: NlpHUST/ner-vietnamese-electra-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: my_awesome_ner-token_classification_v1.0
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_awesome_ner-token_classification_v1.0

This model is a fine-tuned version of [NlpHUST/ner-vietnamese-electra-base](https://huggingface.co/NlpHUST/ner-vietnamese-electra-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0564
- Precision: 0.3927
- Recall: 0.3568
- F1: 0.3739
- Accuracy: 0.7604

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 1.5012        | 1.0   | 113  | 1.4692          | 0.4388    | 0.2417 | 0.3117 | 0.7136   |
| 1.2038        | 2.0   | 226  | 1.1948          | 0.3838    | 0.3237 | 0.3512 | 0.7469   |
| 1.1061        | 3.0   | 339  | 1.0912          | 0.4200    | 0.3402 | 0.3759 | 0.7603   |
| 0.9903        | 4.0   | 452  | 1.0600          | 0.4081    | 0.3548 | 0.3796 | 0.7608   |
| 0.9847        | 5.0   | 565  | 1.0564          | 0.3927    | 0.3568 | 0.3739 | 0.7604   |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1