File size: 1,966 Bytes
120494d c834fd8 120494d c834fd8 120494d c834fd8 120494d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
base_model: NlpHUST/ner-vietnamese-electra-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: my_awesome_ner-token_classification_v1.0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_ner-token_classification_v1.0
This model is a fine-tuned version of [NlpHUST/ner-vietnamese-electra-base](https://huggingface.co/NlpHUST/ner-vietnamese-electra-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0564
- Precision: 0.3927
- Recall: 0.3568
- F1: 0.3739
- Accuracy: 0.7604
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 1.5012 | 1.0 | 113 | 1.4692 | 0.4388 | 0.2417 | 0.3117 | 0.7136 |
| 1.2038 | 2.0 | 226 | 1.1948 | 0.3838 | 0.3237 | 0.3512 | 0.7469 |
| 1.1061 | 3.0 | 339 | 1.0912 | 0.4200 | 0.3402 | 0.3759 | 0.7603 |
| 0.9903 | 4.0 | 452 | 1.0600 | 0.4081 | 0.3548 | 0.3796 | 0.7608 |
| 0.9847 | 5.0 | 565 | 1.0564 | 0.3927 | 0.3568 | 0.3739 | 0.7604 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1
|