lilyyellow commited on
Commit
0675465
1 Parent(s): 8a3904c

End of training

Browse files
Files changed (1) hide show
  1. README.md +19 -15
README.md CHANGED
@@ -1,5 +1,6 @@
1
  ---
2
- base_model: NlpHUST/ner-vietnamese-electra-base
 
3
  tags:
4
  - generated_from_trainer
5
  metrics:
@@ -17,13 +18,13 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  # my_awesome_ner-token_classification_v1.0
19
 
20
- This model is a fine-tuned version of [NlpHUST/ner-vietnamese-electra-base](https://huggingface.co/NlpHUST/ner-vietnamese-electra-base) on an unknown dataset.
21
  It achieves the following results on the evaluation set:
22
- - Loss: 1.0564
23
- - Precision: 0.3927
24
- - Recall: 0.3568
25
- - F1: 0.3739
26
- - Accuracy: 0.7604
27
 
28
  ## Model description
29
 
@@ -48,17 +49,20 @@ The following hyperparameters were used during training:
48
  - seed: 42
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: cosine
51
- - num_epochs: 5
52
 
53
  ### Training results
54
 
55
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
- |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
- | 1.5012 | 1.0 | 113 | 1.4692 | 0.4388 | 0.2417 | 0.3117 | 0.7136 |
58
- | 1.2038 | 2.0 | 226 | 1.1948 | 0.3838 | 0.3237 | 0.3512 | 0.7469 |
59
- | 1.1061 | 3.0 | 339 | 1.0912 | 0.4200 | 0.3402 | 0.3759 | 0.7603 |
60
- | 0.9903 | 4.0 | 452 | 1.0600 | 0.4081 | 0.3548 | 0.3796 | 0.7608 |
61
- | 0.9847 | 5.0 | 565 | 1.0564 | 0.3927 | 0.3568 | 0.3739 | 0.7604 |
 
 
 
62
 
63
 
64
  ### Framework versions
 
1
  ---
2
+ license: mit
3
+ base_model: FacebookAI/xlm-roberta-base
4
  tags:
5
  - generated_from_trainer
6
  metrics:
 
18
 
19
  # my_awesome_ner-token_classification_v1.0
20
 
21
+ This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.8650
24
+ - Precision: 0.4582
25
+ - Recall: 0.5502
26
+ - F1: 0.5
27
+ - Accuracy: 0.8053
28
 
29
  ## Model description
30
 
 
49
  - seed: 42
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: cosine
52
+ - num_epochs: 20
53
 
54
  ### Training results
55
 
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 1.0426 | 1.9912 | 225 | 0.8857 | 0.3633 | 0.3365 | 0.3494 | 0.7753 |
59
+ | 0.7028 | 3.9823 | 450 | 0.7244 | 0.4994 | 0.4647 | 0.4815 | 0.8136 |
60
+ | 0.5281 | 5.9735 | 675 | 0.6965 | 0.4933 | 0.5513 | 0.5207 | 0.8124 |
61
+ | 0.3767 | 7.9646 | 900 | 0.7331 | 0.4760 | 0.5406 | 0.5063 | 0.8169 |
62
+ | 0.2995 | 9.9558 | 1125 | 0.7731 | 0.4646 | 0.5321 | 0.4960 | 0.8158 |
63
+ | 0.2731 | 11.9469 | 1350 | 0.8100 | 0.4650 | 0.5395 | 0.4995 | 0.8074 |
64
+ | 0.2259 | 13.9381 | 1575 | 0.8500 | 0.4769 | 0.5502 | 0.5109 | 0.8112 |
65
+ | 0.1916 | 15.9292 | 1800 | 0.8650 | 0.4582 | 0.5502 | 0.5 | 0.8053 |
66
 
67
 
68
  ### Framework versions