--- license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: my_awesome_ner-token_classification_v1.0 results: [] --- # my_awesome_ner-token_classification_v1.0 This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8650 - Precision: 0.4582 - Recall: 0.5502 - F1: 0.5 - Accuracy: 0.8053 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.0426 | 1.9912 | 225 | 0.8857 | 0.3633 | 0.3365 | 0.3494 | 0.7753 | | 0.7028 | 3.9823 | 450 | 0.7244 | 0.4994 | 0.4647 | 0.4815 | 0.8136 | | 0.5281 | 5.9735 | 675 | 0.6965 | 0.4933 | 0.5513 | 0.5207 | 0.8124 | | 0.3767 | 7.9646 | 900 | 0.7331 | 0.4760 | 0.5406 | 0.5063 | 0.8169 | | 0.2995 | 9.9558 | 1125 | 0.7731 | 0.4646 | 0.5321 | 0.4960 | 0.8158 | | 0.2731 | 11.9469 | 1350 | 0.8100 | 0.4650 | 0.5395 | 0.4995 | 0.8074 | | 0.2259 | 13.9381 | 1575 | 0.8500 | 0.4769 | 0.5502 | 0.5109 | 0.8112 | | 0.1916 | 15.9292 | 1800 | 0.8650 | 0.4582 | 0.5502 | 0.5 | 0.8053 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1