File size: 7,517 Bytes
5a6d827
75ca19e
5a6d827
 
 
 
 
 
 
 
 
75ca19e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a6d827
75a8b45
5a6d827
75a8b45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a6d827
d5b4ff3
5a6d827
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86a4396
5a6d827
 
 
 
 
 
 
 
 
 
 
 
 
75ca19e
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
---
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
- liminerity/binarized-ingotrix-slerp-7b
- eren23/dpo-binarized-NeutrixOmnibe-7B
base_model:
- liminerity/binarized-ingotrix-slerp-7b
- eren23/dpo-binarized-NeutrixOmnibe-7B
model-index:
- name: Omningotex-7b-slerp
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 73.29
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=liminerity/Omningotex-7b-slerp
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 88.96
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=liminerity/Omningotex-7b-slerp
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.69
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=liminerity/Omningotex-7b-slerp
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 76.32
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=liminerity/Omningotex-7b-slerp
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 84.21
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=liminerity/Omningotex-7b-slerp
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 70.51
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=liminerity/Omningotex-7b-slerp
      name: Open LLM Leaderboard
---
Title: Introducing Omningotex-7b: The World's Most Accurate 7B LLM

Today, I'm excited to share the creation of a groundbreaking language model, "liminerity/Omningotex-7b-slerp." This model has achieved an impressive accuracy rate of 76.33%, making it the most accurate 7B LLM in the world.
The journey to create Omningotex-7b-slerp began with an experimental process called "merging." I started with a model named "ingot-7b-slerp," which was created by merging two other LLMs, "blurred-beagle-7b-slerp" (by myself, liminerity) and "Macaroni-7b-Tied" (by andrijdavid), a total of eight times over.
After the successful creation of ingot-7b-slerp, I proceeded to merge it with another model, "dpo-binarized-NeuralTrix-7B" by eren23, using gradient slerp. The resulting model, "binarized-ingotrix-slerp-7b," achieved an accuracy rate of 76.04%.
To further enhance the model's performance, I decided to merge "binarized-ingotrix-slerp-7b" with "dpo-binarized-NeutrixOmnibe-7B" by eren23 once again. The resulting model, "Omningotex-7b," is now the most accurate 7B LLM available.
This breakthrough in LLM accuracy was achieved through a combination of careful experimentation and a deep understanding of the underlying algorithms and techniques. I believe that Omningotex-7b-slerp's success demonstrates the potential for further advancements in the field of natural language processing and artificial intelligence.
I look forward to sharing more updates and insights as I continue to explore the possibilities of LLMs and push the boundaries of what is possible in the world of AI. Stay tuned for more exciting developments in the future!

A huge thank you to Maxime Labonne and his creation of LazyMergeKit colab project. Use of it helped me gain a further grasp of the concepts at play and led to the creation of this model. I'm sure it won't be number 1 for long which excited me even more!

Next, I set out to learn how to fine-tune with the resources I have available.
My next overall goal is to try and find a way to produce a smaller model with high accuracy either through merging down using fewer layers after each merge. I may need to include finetuning between each merge or merging larger more accurate models into a smaller base while maintaining accuracy and performance. Every version of "TinyMistral" I come by seems to be bricked in the sense it spits out nonsense. Thank you for your time If you read this all the way.



# Omningotex-7B-slerp

Omningotex-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [liminerity/binarized-ingotrix-slerp-7b](https://huggingface.co/liminerity/binarized-ingotrix-slerp-7b)
* [eren23/dpo-binarized-NeutrixOmnibe-7B](https://huggingface.co/eren23/dpo-binarized-NeutrixOmnibe-7B)

## 🧩 Configuration

```yaml
slices:
  - sources:
      - model: liminerity/binarized-ingotrix-slerp-7b
        layer_range: [0, 32]
      - model: eren23/dpo-binarized-NeutrixOmnibe-7B
        layer_range: [0, 32]
merge_method: slerp
base_model: liminerity/binarized-ingotrix-slerp-7b
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "liminerity/Omningotex-7b-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_liminerity__Omningotex-7b-slerp)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |76.33|
|AI2 Reasoning Challenge (25-Shot)|73.29|
|HellaSwag (10-Shot)              |88.96|
|MMLU (5-Shot)                    |64.69|
|TruthfulQA (0-shot)              |76.32|
|Winogrande (5-shot)              |84.21|
|GSM8k (5-shot)                   |70.51|