--- language: - fr license: mit datasets: - MLSUM pipeline_tag: "text-classification" widget: - text: La bourse de paris en forte baisse après que des canards ont envahit le parlement. tags: - text-classification - flaubert --- # Classification d'articles de presses avec Flaubert :fire: Ce modèle ce base sur le modèle [`flaubert/flaubert_base_cased`](https://huggingface.co/flaubert/flaubert_base_cased) à et à été fine-tuné en utilisant des articles de presses issus de la base de données MLSUM. Dans leur papier, les équipes de ReciTAl et de la Sorbonne ont proposé comme ouverture de faire de la détection de topic sur les articles de presses. Les topics ont été exraient à partir des URL et nous avons effectué une étapes de regroupement de topic pour éléminer ceux avec un trop faible volumes et ceux qui paraissaient redondants. Nous avons finalement utilisé la liste de topic suivant: * Culture * Economie * Education * Environement * Justice * Opinion * Politique * Societe * Sport * Technologie ## Entrainement Nous avons benchmarké différents modèles en les entrainants sur différentes parties de l'articles (titre, résumé, corps et titre+résumé) et avec des échantillons d'apprentissage de tailles différentes. ![Performance](./assets/Accuracy_cat.png) Les modèles ont été entrainé sur un cloud Azure avec des Tesla V100. ## Résulats ![Matrice de confusion](assets/confusion_cat_m_0.2.png) *Les lignes correspondent aux labels prédient et les colonnes aux véritables topics. Les pourcentages sont calculés sur les colonnes.* ## Utilisation ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification from transformers import TextClassificationPipeline model_name = 'lincoln/flaubert-mlsum-topic-classification' loaded_tokenizer = AutoTokenizer.from_pretrained(model_name) loaded_model = AutoModelForSequenceClassification.from_pretrained(model_name) nlp = TextClassificationPipeline(model=loaded_model, tokenizer=loaded_tokenizer) nlp("Le Bayern Munich prend la grenadine.") ``` ## Citation ```bibtex @article{scialom2020mlsum, title={MLSUM: The Multilingual Summarization Corpus}, author={Thomas Scialom and Paul-Alexis Dray and Sylvain Lamprier and Benjamin Piwowarski and Jacopo Staiano}, year={2020}, eprint={2004.14900}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```