--- license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - lazymergekit - argilla/CapybaraHermes-2.5-Mistral-7B - MediaTek-Research/Breeze-7B-Instruct-v0_1 base_model: - argilla/CapybaraHermes-2.5-Mistral-7B - MediaTek-Research/Breeze-7B-Instruct-v0_1 --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6409720c9e9f790c905ba4bf/v6B0CkdpR74oCetV3w0y-.png) # 試製-暮光-7B 試製-暮光-7B 是用[LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing)融合以下模型生成的: * [MediaTek-Research/Breeze-7B-Instruct-v0_1](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0_1) * [argilla/CapybaraHermes-2.5-Mistral-7B](https://huggingface.co/argilla/CapybaraHermes-2.5-Mistral-7B) 這是一個實驗模型,目的是爲了檢驗套用在不同語言上的高品質模型調教是否能夠轉移(此模型爲英文到中文)。 # shizhi-twilight-7B shizhi-twilight-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [MediaTek-Research/Breeze-7B-Instruct-v0_1](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0_1) * [argilla/CapybaraHermes-2.5-Mistral-7B](https://huggingface.co/argilla/CapybaraHermes-2.5-Mistral-7B) This is an experiment product on checking whether high quality fine-tuning on one language (English) could be transferred to another language (Mandarin) leveraging Slerp merge method. ## 🧩 Configuration ```yaml slices: - sources: - model: MediaTek-Research/Breeze-7B-Instruct-v0_1 layer_range: [0, 32] - model: argilla/CapybaraHermes-2.5-Mistral-7B layer_range: [0, 32] merge_method: slerp base_model: MediaTek-Research/Breeze-7B-Instruct-v0_1 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "lipcut/shizhi-twilight-7B" messages = [{"role": "user", "content": "什麼是大型語言模型?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```