--- library_name: transformers license: apache-2.0 datasets: - liswei/Taiwan-Text-Excellence-2B - liswei/PromptPair-TW - yentinglin/TaiwanChat base_model: - liswei/Taiwan-ELM-270M - apple/OpenELM-270M language: - zh pipeline_tag: text-generation ---
Efficient LLM for Taiwan
> Efficient LLM for Taiwan # Taiwan ELM Taiwan ELM is a family of Efficient LLMs for Taiwan base on [apple/OpenELM](https://huggingface.co/apple/OpenELM). The project aims to provide an efficient model for researchers without access to large-scale computing resources. The model is trained using a custom fork of [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) on 2B Traditional Chinese tokens and 500K instruction samples. We will extend the model to train on larger data sets and different base models if there is sufficient demand. ## What is being released? We release both pre-trained base models and instruction tuned variants with 270M and 1.1B parameters. Along with the model, datasets used to train the base and instruction-tuned models are also released. List of released models: * [Taiwan-ELM-270M](https://huggingface.co/liswei/Taiwan-ELM-270M) * [Taiwan-ELM-1_1B](https://huggingface.co/liswei/Taiwan-ELM-1_1B) * [Taiwan-ELM-270M-Instruct](https://huggingface.co/liswei/Taiwan-ELM-270M-Instruct) * [Taiwan-ELM-1_1B-Instruct](https://huggingface.co/liswei/Taiwan-ELM-1_1B-Instruct) List of released datasets: * [liswei/Taiwan-Text-Excellence-2B](https://huggingface.co/datasets/liswei/Taiwan-Text-Excellence-2B) * [liswei/PromptPair-TW](https://huggingface.co/datasets/liswei/PromptPair-TW) ## Usage Examples We adapt the LLaMA2 template: ```jinja2 [INST] <> {{ system_prompt }} <> {{ user_message }} [/INST] ``` The model could be load via `AutoModelForCausalLM` with `trust_remote_code=True`: ```python taiwanelm_270m = AutoModelForCausalLM.from_pretrained("liswei/Taiwan-ELM-270M", trust_remote_code=True) ``` We also support additional generation methods and speculative generation, please find reference at [OpenELM#usage](https://huggingface.co/apple/OpenELM#usage).