File size: 3,425 Bytes
69691cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
license: other
library_name: peft
tags:
- generated_from_trainer
base_model: deepseek-ai/deepseek-coder-6.7b-base
model-index:
- name: peft-deepseek-code-lora-7b
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# peft-deepseek-code-lora-7b
This model is a fine-tuned version of [deepseek-ai/deepseek-coder-6.7b-base](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7491
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 45
- training_steps: 4000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.801 | 0.025 | 100 | 0.7577 |
| 0.7385 | 0.05 | 200 | 0.7172 |
| 0.7535 | 0.075 | 300 | 0.6915 |
| 0.6987 | 0.1 | 400 | 0.6718 |
| 0.6345 | 0.125 | 500 | 0.6596 |
| 0.623 | 0.15 | 600 | 0.6515 |
| 0.6228 | 0.175 | 700 | 0.6413 |
| 0.5966 | 0.2 | 800 | 0.6362 |
| 0.5503 | 0.225 | 900 | 0.6403 |
| 0.504 | 0.25 | 1000 | 0.6274 |
| 0.4782 | 0.275 | 1100 | 0.6270 |
| 0.5021 | 0.3 | 1200 | 0.6272 |
| 0.4737 | 0.325 | 1300 | 0.6190 |
| 0.4343 | 0.35 | 1400 | 0.6233 |
| 0.458 | 0.375 | 1500 | 0.6247 |
| 0.4316 | 0.4 | 1600 | 0.6302 |
| 0.4161 | 0.425 | 1700 | 0.6337 |
| 0.3798 | 0.45 | 1800 | 0.6307 |
| 0.3731 | 0.475 | 1900 | 0.6382 |
| 0.3339 | 0.5 | 2000 | 0.6468 |
| 0.3279 | 0.525 | 2100 | 0.6529 |
| 0.3042 | 0.55 | 2200 | 0.6484 |
| 0.2738 | 0.575 | 2300 | 0.6612 |
| 0.3121 | 0.6 | 2400 | 0.6684 |
| 0.2735 | 0.625 | 2500 | 0.6795 |
| 0.2595 | 0.65 | 2600 | 0.6802 |
| 0.2291 | 0.675 | 2700 | 0.6856 |
| 0.2239 | 0.7 | 2800 | 0.6964 |
| 0.2242 | 0.725 | 2900 | 0.7081 |
| 0.2357 | 0.75 | 3000 | 0.7200 |
| 0.2058 | 0.775 | 3100 | 0.7166 |
| 0.1881 | 0.8 | 3200 | 0.7303 |
| 0.1859 | 0.825 | 3300 | 0.7299 |
| 0.193 | 0.85 | 3400 | 0.7375 |
| 0.2061 | 0.875 | 3500 | 0.7392 |
| 0.1719 | 0.9 | 3600 | 0.7461 |
| 0.1908 | 0.925 | 3700 | 0.7464 |
| 0.1756 | 0.95 | 3800 | 0.7480 |
| 0.1863 | 0.975 | 3900 | 0.7489 |
| 0.1619 | 1.0 | 4000 | 0.7491 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.14.6
- Tokenizers 0.19.1 |