Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +17 -17
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 255.93 +/- 21.50
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ddc01423640>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ddc014236d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ddc01423760>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ddc014237f0>", "_build": "<function ActorCriticPolicy._build at 0x7ddc01423880>", "forward": "<function ActorCriticPolicy.forward at 0x7ddc01423910>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ddc014239a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ddc01423a30>", "_predict": "<function ActorCriticPolicy._predict at 0x7ddc01423ac0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ddc01423b50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ddc01423be0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ddc01423c70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ddc01430500>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698316804609629534, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOrvVr5/Lmk/ktkDva3Vu74oZNS9cLZ7PQAAAAAAAAAATZZEvTSkfz+kQB+9IXvTvr3Jab1bUgy9AAAAAAAAAACaIhA9rOWeP2LQGD4+Hfi+Im8mPSip8z0AAAAAAAAAAADgdz1crzW67R7pOkLPkjZPjgs7sgYHugAAgD8AAIA/MzHIPV7M2D6Kmh2+NyGZvpNLAr0TlWA8AAAAAAAAAADNgJc7KTRzuqJJ/7OfClWwEBUmO1iDqjMAAIA/AACAP83fFj5biMQ+6pStvkdqjr7tY7K9u5KhvQAAAAAAAAAAzS2GvIiP0D3qv8I9ULxkvs6YrjwGgZG8AAAAAAAAAABNBhM9uHGYu6jeC73fWby9KZcnPRhjkT4AAAAAAACAP8BRjj1MCIU/o1QSPbOD1r5xyAo+O3JoPQAAAAAAAAAAWqrDPX27qj+iExY/jYvUvu6cEz36GXc+AAAAAAAAAAAAiKk77pOzPzL3hT7adkK+OBnCu3hEcL0AAAAAAAAAALMGDz30x7m82nVJPPfsPD0YLke9ZgWMuwAAgD8AAIA/pjkkPuTvaj6d2cS+Pmepvupmwb2LfwW+AAAAAAAAAACzJEk9S8CkPWGrFL6wbS6+qqOevU4NtTwAAAAAAAAAAGBZKr6U8CE/6/wCPoJ3h75GdRe9gvS3PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDSEdV/+bWMAWyUTSgBjAF0lEdAoDSeu3c583V9lChoBkdAcmkTWGyooGgHTQMBaAhHQKA1hH93r2R1fZQoaAZHQHCs3fdhy81oB00JAWgIR0CgNZEpI+W4dX2UKGgGR0BytzjS5RTCaAdL+2gIR0CgNZ5yMkyDdX2UKGgGR0BxH03CKrJbaAdNKgFoCEdAoDXUvTPSlXV9lChoBkdAbuhTAFgUlGgHTSMBaAhHQKA2Q4z7/GV1fZQoaAZHQG017SApazNoB00HAWgIR0CgNqck2P1ddX2UKGgGR0BRxm47Rv3raAdL3WgIR0CgNrPdVNpNdX2UKGgGR0BxUY2qDK5kaAdNJgFoCEdAoDcyFqSHM3V9lChoBkdAcOJCz1K5CmgHTR0BaAhHQKA3MQg9vCN1fZQoaAZHQEr6JLM9r45oB0v2aAhHQKA3VW+49X91fZQoaAZHQHGtEH+qBEtoB005AWgIR0CgN2SZBsyjdX2UKGgGR0Bzg3KT0QK8aAdNSwFoCEdAoDezronrp3V9lChoBkdAcH5KCxu89WgHTVABaAhHQKA4iakRBeJ1fZQoaAZHQG7mPK+zt1JoB00WAWgIR0CgOLwrc0tRdX2UKGgGR0By5Srq+rU9aAdNFQFoCEdAoDjDa4+bE3V9lChoBkdActcSoOx0MmgHTQkBaAhHQKA42JBPbfx1fZQoaAZHQHDRfYSQHRloB0v6aAhHQKA5j+wTufF1fZQoaAZHQHMkN+kP+XJoB0v5aAhHQKA5wjSofjl1fZQoaAZHQHGX1a4c3l1oB00rAWgIR0CgOjyHEdeZdX2UKGgGR0Bv5GNgjQiSaAdL/mgIR0CgOkX9itq6dX2UKGgGR0Bw7p7kXDWLaAdNLQFoCEdAoDpOKZUkwHV9lChoBkdAcVwqLjxTbWgHTR8BaAhHQKA7H9srNGF1fZQoaAZHQHJ3uDWbw0BoB0v+aAhHQKA7I4FzMid1fZQoaAZHQHAWDcIqsltoB00yAWgIR0CgO3dz4k/sdX2UKGgGR0BxorQ+lj3FaAdNEQFoCEdAoDulSflIVnV9lChoBkdAcvrrrPdEcGgHTSoBaAhHQKA70CXhOxl1fZQoaAZHQHHzIBikO7RoB00bAWgIR0CgPCRD1GsndX2UKGgGR0ByYAANoakzaAdL7mgIR0CgPFhwEQoTdX2UKGgGR0BukWYIBzV+aAdNBgFoCEdAoDzFBlcyFnV9lChoBkdAb73Aqur6tWgHTREBaAhHQKA84GPgeil1fZQoaAZHQHDvS08eS0VoB013AWgIR0CgPS2rwOOKdX2UKGgGR0BwqYD+zdDZaAdNPAFoCEdAoD1s4aP0ZnV9lChoBkdAcSJvAoG6gGgHTQIBaAhHQKA9gDJ2dNF1fZQoaAZHQHBEEw8GLUFoB00EAWgIR0CgPbOZLIxQdX2UKGgGR0By1Kj+JgstaAdL52gIR0CgPcjzRQaadX2UKGgGR0BvvwPPLPldaAdNAgFoCEdAoD4SwB5ooXV9lChoBkdAcs9Fyq+8G2gHTRYBaAhHQKA/U0CzTnd1fZQoaAZHQG577S7Xg+BoB01XAWgIR0CgS5f4IrvtdX2UKGgGR0Bw/iGQCCBgaAdNPwFoCEdAoExVB2OhkHV9lChoBkdAcGCZnctXgmgHTQEBaAhHQKBMbOKwY+B1fZQoaAZHQHGgywr1/UhoB00YAWgIR0CgTHHOKO1fdX2UKGgGR0BwPMc4o7V8aAdNMwFoCEdAoEyD70nPV3V9lChoBkdAcEoOVgQYk2gHTTIBaAhHQKBMvyWAwwl1fZQoaAZHQHFJ1vl2eQNoB00DAWgIR0CgTU7KzRhMdX2UKGgGR0ByOCQr+YMOaAdNCQFoCEdAoE31TaTOgXV9lChoBkdAce/sNDtw72gHS+RoCEdAoE4SXnhbW3V9lChoBkdAcDvPuXu3MWgHS/9oCEdAoE4Y7cO9WnV9lChoBkdAcZIhJyyUtGgHTSMBaAhHQKBOJGtp22Z1fZQoaAZHQHFgrzXjENxoB01PAWgIR0CgTlFPJq7AdX2UKGgGR0ByQobADaGpaAdNHQFoCEdAoE6rtG/etXV9lChoBkdAcGVChvitJWgHTSoBaAhHQKBPLUvPC2t1fZQoaAZHQHCVXBUJfIFoB00bAWgIR0CgT2//echDdX2UKGgGR0Bye+wFC9h7aAdL/GgIR0CgUKBWgezVdX2UKGgGR0BunUlZ5iVjaAdNDwFoCEdAoFD2qR2bG3V9lChoBkdAcNyr1M/QjWgHTRoBaAhHQKBSd+Kjzqd1fZQoaAZHQHCQraM72ctoB0v0aAhHQKBSmMfigkF1fZQoaAZHQHDGObI91U5oB00TAWgIR0CgUrP1tfoidX2UKGgGR0BuhzqOcUdraAdNIAFoCEdAoFK+ii7Ci3V9lChoBkdAcgtiwSrYG2gHTS8BaAhHQKBS3oKUmlZ1fZQoaAZHQHC2KdH2AXloB00zAWgIR0CgUxEkB0ZFdX2UKGgGR0Bvhvt8eCCjaAdL/mgIR0CgU5vKU3XJdX2UKGgGR0Bw/bDTBqKxaAdNDQFoCEdAoFP8bgjyF3V9lChoBkdAcLweDnNgSmgHTR8BaAhHQKBUQCI1tO51fZQoaAZHQHJQudCmdiFoB00hAWgIR0CgVHvFNtZWdX2UKGgGR0Bz/Cdc0LtvaAdL6GgIR0CgVNlnRLK3dX2UKGgGR0BsuaS9ugpSaAdNLwFoCEdAoFUA1LrX2HV9lChoBkdAbbqcDKYAsGgHTSMBaAhHQKBV0xTKkmB1fZQoaAZHQHFiENBnjABoB01JAWgIR0CgVg1bzK9xdX2UKGgGR0BQEgSi/O+qaAdL2GgIR0CgV0BRIjGDdX2UKGgGR0BvjHg3tKI0aAdNPQFoCEdAoFd83wTdtXV9lChoBkdAcRN+vhZQpGgHS+xoCEdAoFe2j7ALzHV9lChoBkdAcvC8hs67umgHTQABaAhHQKBXzTgl4Tt1fZQoaAZHQHH3SRr8BMloB00SAWgIR0CgV+6/ATIvdX2UKGgGR0BwZ+JtSAH3aAdNUAFoCEdAoFgCGzru6XV9lChoBkdAcgpiKBNEgGgHTRoBaAhHQKBYGmwaBI51fZQoaAZHQHCkg0Kqn3toB00gAWgIR0CgWDtTLns+dX2UKGgGR0BzKkGIKtxNaAdNAAFoCEdAoFhaLXL/0nV9lChoBkdAcKlUbkwN9mgHTSABaAhHQKBZLnoPkJd1fZQoaAZHQHAbW4mTkhloB00XAWgIR0CgWTYbbUPQdX2UKGgGR0BxubH+6y0KaAdL+2gIR0CgWbnLidaudX2UKGgGR0Bwsb7HhjvvaAdNUgFoCEdAoFnCauwHJXV9lChoBkdAcRR4REnb7GgHTSsBaAhHQKBZ3zUZvUB1fZQoaAZHQHDl75/LDAJoB0v6aAhHQKBZ3S9/SYx1fZQoaAZHQHHkDcuanaZoB00zAWgIR0CgWeIg/1QJdX2UKGgGR0BL2tw71ZkkaAdLxWgIR0CgWvTPSlWPdX2UKGgGR0BxA2MERraeaAdL9WgIR0CgWysWGh24dX2UKGgGR0BynKYnfEXMaAdNCAFoCEdAoFs/0NBnjHV9lChoBkdAcGkxgy/KyWgHS/1oCEdAoFtk2m51/3V9lChoBkdAcnr4s3AEdWgHS+hoCEdAoFtghW5panV9lChoBkdAbKyRODaoM2gHTQ8BaAhHQKBcXEMLF4t1fZQoaAZHQHGRgaNuLrJoB01gAWgIR0CgXHsKCxu9dX2UKGgGR0BydD420iQlaAdNNwFoCEdAoFyFDtw71nV9lChoBkdAcIgaEzwc52gHTUIBaAhHQKBcvd1MdtF1fZQoaAZHQE1oNgjQiRpoB0vbaAhHQKBdKSSNfgJ1fZQoaAZHQHG1p1A7gbZoB00bAWgIR0CgXXEgntv5dX2UKGgGR0BxgmPsAvL6aAdNJAFoCEdAoF2c+9rXUnV9lChoBkdAcWw7F85S32gHTQwBaAhHQKBd72ZiNKh1fZQoaAZHQG7hcMNMGotoB00dAWgIR0CgXgkKeCkHdX2UKGgGR0Bx7QNDtw71aAdNJwFoCEdAoF477wazeHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 276, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f99195f0550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f99195f05e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f99195f0670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f99195f0700>", "_build": "<function ActorCriticPolicy._build at 0x7f99195f0790>", "forward": "<function ActorCriticPolicy.forward at 0x7f99195f0820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f99195f08b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f99195f0940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f99195f09d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f99195f0a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f99195f0af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f99195f0b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9919581740>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698780644986388593, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGC4I74DTh28qoqJuwrmw7m2ko49KpyiOgAAgD8AAIA/gJvGvew5ibkNVhc7i3Aktr9Hq7rjfzK6AAAAAAAAgD/NUQW99iU7vH0n4jwgGLc8wdOjPUxQlb0AAIA/AACAP2YrFz3C9Xw/kgB6PYlU7r7f80s9wlFpvAAAAAAAAAAAmmXUvYVTiLktHZq4jWr1swJHjrunbLg3AAAAAAAAgD86G08+2oUDvcg10D2OQ4m8y1FkvggRT70AAIA/AACAP2b2ubwQvbM/AjcFvuUJVL6xtr+8Qi3hvQAAAAAAAAAAplEcvgfAYD5YgxU+o48kvvVic72XCqY9AAAAAAAAAAA6hQi+qnuGPg55Wz6l30i+KJW5PYB0yrwAAAAAAAAAAJr5HDt4zOI9m/i+OxykE75iims9AvtMvQAAAAAAAAAAADhiPAcJMz5ScA48RGNZvpBBaT3ZSoK8AAAAAAAAAAB1JIK+9pLgPkz4sD7jUpG+vP/1vaWGZz4AAAAAAAAAACZK2r1vKZc+uH4wvUavhb7Fmmm9zF8KvQAAAAAAAAAAALrDvSlwSbrVzEa7TVwOtvgGBzkGTWU6AAAAAAAAgD+gNSq+B2qpPnq0fz7zT5a+g8wwPUTWkT0AAAAAAAAAAGbUEr4+lCY/6esfvG105761j8y9yv01PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGnJJwsGxGMAWyUTRsBjAF0lEdAkUZi0WuX/3V9lChoBkdAS35YHPeHi2gHS9RoCEdAkUab4nF5wHV9lChoBkdAcd8ONo8IRmgHTQQBaAhHQJFHQE/0NBp1fZQoaAZHQHLIgKOT7l9oB00QAWgIR0CRR/7bcoH+dX2UKGgGR0BwsQ7hegL7aAdNSwFoCEdAkUixmkFfRnV9lChoBkdAcrj90A93bGgHS/9oCEdAkUkhWkrPMXV9lChoBkdAboxLeyiVSmgHTUQBaAhHQJFKF30PH1h1fZQoaAZHQHGmjOX3QD5oB00KAWgIR0CRTAHyVfNSdX2UKGgGR0Bxj0SwnpjdaAdL+mgIR0CRTGVoHs1LdX2UKGgGR0BmyzMJQcghaAdN4gJoCEdAkUzwumJm/XV9lChoBkdAb6iD3/Pw/mgHTQQBaAhHQJFNX0XgtOF1fZQoaAZHQFFhYyO7xutoB03oA2gIR0CRTiIoE0SAdX2UKGgGR0BvXBlFtsN2aAdNKAFoCEdAkU8kh/y5JHV9lChoBkdAbf4PlMh5gWgHTQgBaAhHQJFPO1OTJQt1fZQoaAZHQG17OscQyyloB00QAWgIR0CRYHbGm1pkdX2UKGgGR0Byz11eSjgyaAdNUgFoCEdAkWIUTlDF63V9lChoBkdAcRxGcnVoYmgHTTwBaAhHQJFiuosI3R51fZQoaAZHQHEpgTEit7toB00qAWgIR0CRYtHS4OMEdX2UKGgGR0Bkh9anrIHUaAdN6ANoCEdAkWLUTURWcXV9lChoBkdAcEAjAi3XqmgHTQkBaAhHQJFjHuv2XcB1fZQoaAZHQG6F/uTibUhoB00kAmgIR0CRZHY+B6KMdX2UKGgGR0Bm+fE2pAD8aAdN6ANoCEdAkWSbg4wRG3V9lChoBkdAczvRVIZqEmgHTV8BaAhHQJFktg2Ifr91fZQoaAZHQHM/Viay8jBoB00kAWgIR0CRZXIeo1k2dX2UKGgGR0Bw3PKyOaOQaAdNNQFoCEdAkWY5PykKu3V9lChoBkdAbmdSeiBXjmgHTSYBaAhHQJFmrQ4S6Dp1fZQoaAZHQHEbmn4wh4doB00bAWgIR0CRZwXdTHbRdX2UKGgGR0BwAmrYGt6paAdNPwFoCEdAkWcCnP3SKHV9lChoBkdAcgAv4M4LkWgHTR4BaAhHQJFn3YzzmOl1fZQoaAZHQG+yxArxy4poB00aAWgIR0CRaLJ/XoTxdX2UKGgGR0BytRYU34sVaAdL9GgIR0CRaXhMrVe8dX2UKGgGR0BvAEfeUILPaAdNAAFoCEdAkWv7YK6WgXV9lChoBkdAcenMLF4s3GgHTSMBaAhHQJFtXCSA6Ml1fZQoaAZHQHF9UGeMAFRoB01cAWgIR0CRbffzz3AVdX2UKGgGR0BxALJlrdnCaAdNaAFoCEdAkW4GGdqcmXV9lChoBkdAcMFe5nUUf2gHTX4BaAhHQJFvIldC3PR1fZQoaAZHQHJ6lSn+AEtoB0vwaAhHQJFvXyQPqcF1fZQoaAZHQG3/af8MuvloB00GAWgIR0CRcGW+oLofdX2UKGgGR0BxgTCDVYp2aAdNaQFoCEdAkXFAUtZmqnV9lChoBkdAcrW9vS+g12gHTTgBaAhHQJFxghTwUg11fZQoaAZHQHFGk6gdwNtoB01HAWgIR0CRcsv99+gEdX2UKGgGR0ByXl+2E0zkaAdNiQFoCEdAkXPON5t3wHV9lChoBkdAcHVeDnNgSmgHTXABaAhHQJF2oWTHKfZ1fZQoaAZHQHNNejM3ZPFoB0vqaAhHQJF2xPuXu3N1fZQoaAZHQHFllYyO7xxoB008AWgIR0CRdv73PAwgdX2UKGgGR0Bt7pFmWdEtaAdNBAFoCEdAkXn11GLDRHV9lChoBkdAcjGiWmgrY2gHS/BoCEdAkXpcSCe2/nV9lChoBkdAa16HtWuHOGgHTR0BaAhHQJF8Zoakyk91fZQoaAZHQG9o2ZRbbDdoB01mAWgIR0CRfndN34bkdX2UKGgGR0BtfJlOGj9GaAdNQAFoCEdAkYDjiXIEKXV9lChoBkdAciXdyksSTWgHTVYBaAhHQJGCIlQdjoZ1fZQoaAZHQHLHdadMCcRoB00lAWgIR0CRglC3gDRudX2UKGgGR0BwXovzvqkeaAdNiwFoCEdAkYM7z9S/CnV9lChoBkdAcR6pZOi35WgHTdABaAhHQJGD8lAu7H11fZQoaAZHQHFD1F+d9UloB00UAWgIR0CRhFOzIFNddX2UKGgGR0BiIIDs+mm+aAdN6ANoCEdAkYa83yZrpXV9lChoBkdAcAero4dZJWgHTSABaAhHQJGHGavzOHF1fZQoaAZHQHBJ9ShrWRRoB00JAWgIR0CRiALW7OE/dX2UKGgGR0BxF1W6shgWaAdN3wFoCEdAkZioQz1scnV9lChoBkdAcJt4vN/vv2gHTYwBaAhHQJGYzbblA/t1fZQoaAZHQF3sk/8l5W1oB03oA2gIR0CRmdpVjqfOdX2UKGgGR0Bw84gvDgqFaAdNQAFoCEdAkZtnJcPe6HV9lChoBkdAciWYekpI+WgHTRQBaAhHQJGcgcR15jZ1fZQoaAZHQG/UNYbKifxoB01aAWgIR0CRnelgtvn9dX2UKGgGR0ByS6LXL/0eaAdNLwFoCEdAkZ5zjin5z3V9lChoBkdAcQL9rXUYsWgHTR4BaAhHQJGe3L0SRKZ1fZQoaAZHQEF1fF72L51oB0vNaAhHQJGf/SLIgeR1fZQoaAZHQHGmErsjVx1oB01YAmgIR0CRoA78ejmCdX2UKGgGR0BuF2Hk92X+aAdNCwFoCEdAkaCK/RE4N3V9lChoBkdAbfCxkd3jdmgHTZMBaAhHQJGg/mbLEDR1fZQoaAZHQHLBGNzbN8poB00OAWgIR0CRocchTwUhdX2UKGgGR0BfY6ouPFNtaAdN6ANoCEdAkaIr+PzWgHV9lChoBkdAb3wAHVwxWWgHTR0BaAhHQJGinz/ZM+N1fZQoaAZHQHJQGBnSOR1oB01XAWgIR0CRo19OARTTdX2UKGgGR0BMcNJnQID6aAdLyGgIR0CRpxcVgx8EdX2UKGgGR0Bw7gZwXIluaAdNCAFoCEdAkadS97F85XV9lChoBkdAb+29i+cpb2gHTTcBaAhHQJGnwy/KyOd1fZQoaAZHQHD8aohpxm1oB0v+aAhHQJGrGekHlfZ1fZQoaAZHQHCUSQ9zOopoB0vsaAhHQJGrgcbR4Ql1fZQoaAZHQHLpYe9zwMJoB01AAWgIR0CRrnTAnDzidX2UKGgGR0BuHs3S8an8aAdNhQFoCEdAka8c7ZFoc3V9lChoBkdAcStAS39aU2gHTSMBaAhHQJGviQ9zOop1fZQoaAZHQG0hhtDUmUpoB006AWgIR0CRsYyX2M86dX2UKGgGR0BxsjMaCL/CaAdNRAFoCEdAkbOEHUtqYnV9lChoBkdAb4xYcvM8o2gHTQIBaAhHQJG2j8R+SbJ1fZQoaAZHQGCg9IPK+ztoB03oA2gIR0CRtrLGaQV9dX2UKGgGR0ByGxXEIgNgaAdN+wFoCEdAkbapAD7qIXV9lChoBkdAbzRVjqfOEGgHTR0BaAhHQJG3giTt9hJ1fZQoaAZHQHE/CIYWLxZoB00sAWgIR0CRt/3qRlpXdX2UKGgGR0BxzGKJl8PXaAdNJgFoCEdAkbvTrAxi5XV9lChoBkdAb0YGqxTsIGgHTQkBaAhHQJG9LtqpLmJ1fZQoaAZHQHH9qujh1kloB00HAWgIR0CRv6LH+6y0dX2UKGgGR0Bx8bDiwSrYaAdNOwFoCEdAkcBI3vQWvnV9lChoBkdAcoNtALRa5mgHS/ZoCEdAkcBW/JvHcXV9lChoBkdAXom7lJYkmmgHTegDaAhHQJHAajZcs191fZQoaAZHQHBcbWd3B55oB02DAWgIR0CRwICzC1qndX2UKGgGR0BxZR9PUKAsaAdNdgFoCEdAkcHsBuGbkXV9lChoBkdAcQLBUaQ3gmgHTQ4BaAhHQJHCt4oqkM11fZQoaAZHQHAemq94/u9oB00oAWgIR0CRw5bd8Aq/dX2UKGgGR0BySOZH/cWTaAdNRQFoCEdAkcRsYl6Z6XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:25febb2bd141c57b9b43f78920114fadfc21c40acf1477ca48299db69d5f4127
|
3 |
+
size 148042
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -26,12 +26,12 @@
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -45,13 +45,13 @@
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f99195f0550>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f99195f05e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f99195f0670>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f99195f0700>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f99195f0790>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f99195f0820>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f99195f08b0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f99195f0940>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f99195f09d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f99195f0a60>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f99195f0af0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f99195f0b80>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f9919581740>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1698780644986388593,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGC4I74DTh28qoqJuwrmw7m2ko49KpyiOgAAgD8AAIA/gJvGvew5ibkNVhc7i3Aktr9Hq7rjfzK6AAAAAAAAgD/NUQW99iU7vH0n4jwgGLc8wdOjPUxQlb0AAIA/AACAP2YrFz3C9Xw/kgB6PYlU7r7f80s9wlFpvAAAAAAAAAAAmmXUvYVTiLktHZq4jWr1swJHjrunbLg3AAAAAAAAgD86G08+2oUDvcg10D2OQ4m8y1FkvggRT70AAIA/AACAP2b2ubwQvbM/AjcFvuUJVL6xtr+8Qi3hvQAAAAAAAAAAplEcvgfAYD5YgxU+o48kvvVic72XCqY9AAAAAAAAAAA6hQi+qnuGPg55Wz6l30i+KJW5PYB0yrwAAAAAAAAAAJr5HDt4zOI9m/i+OxykE75iims9AvtMvQAAAAAAAAAAADhiPAcJMz5ScA48RGNZvpBBaT3ZSoK8AAAAAAAAAAB1JIK+9pLgPkz4sD7jUpG+vP/1vaWGZz4AAAAAAAAAACZK2r1vKZc+uH4wvUavhb7Fmmm9zF8KvQAAAAAAAAAAALrDvSlwSbrVzEa7TVwOtvgGBzkGTWU6AAAAAAAAgD+gNSq+B2qpPnq0fz7zT5a+g8wwPUTWkT0AAAAAAAAAAGbUEr4+lCY/6esfvG105761j8y9yv01PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGnJJwsGxGMAWyUTRsBjAF0lEdAkUZi0WuX/3V9lChoBkdAS35YHPeHi2gHS9RoCEdAkUab4nF5wHV9lChoBkdAcd8ONo8IRmgHTQQBaAhHQJFHQE/0NBp1fZQoaAZHQHLIgKOT7l9oB00QAWgIR0CRR/7bcoH+dX2UKGgGR0BwsQ7hegL7aAdNSwFoCEdAkUixmkFfRnV9lChoBkdAcrj90A93bGgHS/9oCEdAkUkhWkrPMXV9lChoBkdAboxLeyiVSmgHTUQBaAhHQJFKF30PH1h1fZQoaAZHQHGmjOX3QD5oB00KAWgIR0CRTAHyVfNSdX2UKGgGR0Bxj0SwnpjdaAdL+mgIR0CRTGVoHs1LdX2UKGgGR0BmyzMJQcghaAdN4gJoCEdAkUzwumJm/XV9lChoBkdAb6iD3/Pw/mgHTQQBaAhHQJFNX0XgtOF1fZQoaAZHQFFhYyO7xutoB03oA2gIR0CRTiIoE0SAdX2UKGgGR0BvXBlFtsN2aAdNKAFoCEdAkU8kh/y5JHV9lChoBkdAbf4PlMh5gWgHTQgBaAhHQJFPO1OTJQt1fZQoaAZHQG17OscQyyloB00QAWgIR0CRYHbGm1pkdX2UKGgGR0Byz11eSjgyaAdNUgFoCEdAkWIUTlDF63V9lChoBkdAcRxGcnVoYmgHTTwBaAhHQJFiuosI3R51fZQoaAZHQHEpgTEit7toB00qAWgIR0CRYtHS4OMEdX2UKGgGR0Bkh9anrIHUaAdN6ANoCEdAkWLUTURWcXV9lChoBkdAcEAjAi3XqmgHTQkBaAhHQJFjHuv2XcB1fZQoaAZHQG6F/uTibUhoB00kAmgIR0CRZHY+B6KMdX2UKGgGR0Bm+fE2pAD8aAdN6ANoCEdAkWSbg4wRG3V9lChoBkdAczvRVIZqEmgHTV8BaAhHQJFktg2Ifr91fZQoaAZHQHM/Viay8jBoB00kAWgIR0CRZXIeo1k2dX2UKGgGR0Bw3PKyOaOQaAdNNQFoCEdAkWY5PykKu3V9lChoBkdAbmdSeiBXjmgHTSYBaAhHQJFmrQ4S6Dp1fZQoaAZHQHEbmn4wh4doB00bAWgIR0CRZwXdTHbRdX2UKGgGR0BwAmrYGt6paAdNPwFoCEdAkWcCnP3SKHV9lChoBkdAcgAv4M4LkWgHTR4BaAhHQJFn3YzzmOl1fZQoaAZHQG+yxArxy4poB00aAWgIR0CRaLJ/XoTxdX2UKGgGR0BytRYU34sVaAdL9GgIR0CRaXhMrVe8dX2UKGgGR0BvAEfeUILPaAdNAAFoCEdAkWv7YK6WgXV9lChoBkdAcenMLF4s3GgHTSMBaAhHQJFtXCSA6Ml1fZQoaAZHQHF9UGeMAFRoB01cAWgIR0CRbffzz3AVdX2UKGgGR0BxALJlrdnCaAdNaAFoCEdAkW4GGdqcmXV9lChoBkdAcMFe5nUUf2gHTX4BaAhHQJFvIldC3PR1fZQoaAZHQHJ6lSn+AEtoB0vwaAhHQJFvXyQPqcF1fZQoaAZHQG3/af8MuvloB00GAWgIR0CRcGW+oLofdX2UKGgGR0BxgTCDVYp2aAdNaQFoCEdAkXFAUtZmqnV9lChoBkdAcrW9vS+g12gHTTgBaAhHQJFxghTwUg11fZQoaAZHQHFGk6gdwNtoB01HAWgIR0CRcsv99+gEdX2UKGgGR0ByXl+2E0zkaAdNiQFoCEdAkXPON5t3wHV9lChoBkdAcHVeDnNgSmgHTXABaAhHQJF2oWTHKfZ1fZQoaAZHQHNNejM3ZPFoB0vqaAhHQJF2xPuXu3N1fZQoaAZHQHFllYyO7xxoB008AWgIR0CRdv73PAwgdX2UKGgGR0Bt7pFmWdEtaAdNBAFoCEdAkXn11GLDRHV9lChoBkdAcjGiWmgrY2gHS/BoCEdAkXpcSCe2/nV9lChoBkdAa16HtWuHOGgHTR0BaAhHQJF8Zoakyk91fZQoaAZHQG9o2ZRbbDdoB01mAWgIR0CRfndN34bkdX2UKGgGR0BtfJlOGj9GaAdNQAFoCEdAkYDjiXIEKXV9lChoBkdAciXdyksSTWgHTVYBaAhHQJGCIlQdjoZ1fZQoaAZHQHLHdadMCcRoB00lAWgIR0CRglC3gDRudX2UKGgGR0BwXovzvqkeaAdNiwFoCEdAkYM7z9S/CnV9lChoBkdAcR6pZOi35WgHTdABaAhHQJGD8lAu7H11fZQoaAZHQHFD1F+d9UloB00UAWgIR0CRhFOzIFNddX2UKGgGR0BiIIDs+mm+aAdN6ANoCEdAkYa83yZrpXV9lChoBkdAcAero4dZJWgHTSABaAhHQJGHGavzOHF1fZQoaAZHQHBJ9ShrWRRoB00JAWgIR0CRiALW7OE/dX2UKGgGR0BxF1W6shgWaAdN3wFoCEdAkZioQz1scnV9lChoBkdAcJt4vN/vv2gHTYwBaAhHQJGYzbblA/t1fZQoaAZHQF3sk/8l5W1oB03oA2gIR0CRmdpVjqfOdX2UKGgGR0Bw84gvDgqFaAdNQAFoCEdAkZtnJcPe6HV9lChoBkdAciWYekpI+WgHTRQBaAhHQJGcgcR15jZ1fZQoaAZHQG/UNYbKifxoB01aAWgIR0CRnelgtvn9dX2UKGgGR0ByS6LXL/0eaAdNLwFoCEdAkZ5zjin5z3V9lChoBkdAcQL9rXUYsWgHTR4BaAhHQJGe3L0SRKZ1fZQoaAZHQEF1fF72L51oB0vNaAhHQJGf/SLIgeR1fZQoaAZHQHGmErsjVx1oB01YAmgIR0CRoA78ejmCdX2UKGgGR0BuF2Hk92X+aAdNCwFoCEdAkaCK/RE4N3V9lChoBkdAbfCxkd3jdmgHTZMBaAhHQJGg/mbLEDR1fZQoaAZHQHLBGNzbN8poB00OAWgIR0CRocchTwUhdX2UKGgGR0BfY6ouPFNtaAdN6ANoCEdAkaIr+PzWgHV9lChoBkdAb3wAHVwxWWgHTR0BaAhHQJGinz/ZM+N1fZQoaAZHQHJQGBnSOR1oB01XAWgIR0CRo19OARTTdX2UKGgGR0BMcNJnQID6aAdLyGgIR0CRpxcVgx8EdX2UKGgGR0Bw7gZwXIluaAdNCAFoCEdAkadS97F85XV9lChoBkdAb+29i+cpb2gHTTcBaAhHQJGnwy/KyOd1fZQoaAZHQHD8aohpxm1oB0v+aAhHQJGrGekHlfZ1fZQoaAZHQHCUSQ9zOopoB0vsaAhHQJGrgcbR4Ql1fZQoaAZHQHLpYe9zwMJoB01AAWgIR0CRrnTAnDzidX2UKGgGR0BuHs3S8an8aAdNhQFoCEdAka8c7ZFoc3V9lChoBkdAcStAS39aU2gHTSMBaAhHQJGviQ9zOop1fZQoaAZHQG0hhtDUmUpoB006AWgIR0CRsYyX2M86dX2UKGgGR0BxsjMaCL/CaAdNRAFoCEdAkbOEHUtqYnV9lChoBkdAb4xYcvM8o2gHTQIBaAhHQJG2j8R+SbJ1fZQoaAZHQGCg9IPK+ztoB03oA2gIR0CRtrLGaQV9dX2UKGgGR0ByGxXEIgNgaAdN+wFoCEdAkbapAD7qIXV9lChoBkdAbzRVjqfOEGgHTR0BaAhHQJG3giTt9hJ1fZQoaAZHQHE/CIYWLxZoB00sAWgIR0CRt/3qRlpXdX2UKGgGR0BxzGKJl8PXaAdNJgFoCEdAkbvTrAxi5XV9lChoBkdAb0YGqxTsIGgHTQkBaAhHQJG9LtqpLmJ1fZQoaAZHQHH9qujh1kloB00HAWgIR0CRv6LH+6y0dX2UKGgGR0Bx8bDiwSrYaAdNOwFoCEdAkcBI3vQWvnV9lChoBkdAcoNtALRa5mgHS/ZoCEdAkcBW/JvHcXV9lChoBkdAXom7lJYkmmgHTegDaAhHQJHAajZcs191fZQoaAZHQHBcbWd3B55oB02DAWgIR0CRwICzC1qndX2UKGgGR0BxZR9PUKAsaAdNdgFoCEdAkcHsBuGbkXV9lChoBkdAcQLBUaQ3gmgHTQ4BaAhHQJHCt4oqkM11fZQoaAZHQHAemq94/u9oB00oAWgIR0CRw5bd8Aq/dX2UKGgGR0BySOZH/cWTaAdNRQFoCEdAkcRsYl6Z6XVlLg=="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 248,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88362
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ab992b1f780c22c7e2fb5841da2c8f54288d2a2260ff6629227e2e38cba827f
|
3 |
size 88362
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43762
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e08f349ad39bf4f9e0d358b47c2c5797d173477ffc62a3a99787f0ff14a3916e
|
3 |
size 43762
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 255.93233084482426, "std_reward": 21.496621104961303, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-31T19:56:44.597104"}
|