--- base_model: meta-llama/Meta-Llama-3-8B datasets: - llama-duo/synth_coding_dataset_dedup library_name: peft license: llama3 tags: - alignment-handbook - trl - sft - generated_from_trainer model-index: - name: llama3-8b-coding-gpt4o-100k results: [] --- # llama3-8b-coding-gpt4o-100k This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the llama-duo/synth_coding_dataset_dedup dataset. It achieves the following results on the evaluation set: - Loss: 1.5174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.4861 | 1.0 | 135 | 1.2495 | | 0.458 | 2.0 | 270 | 1.2390 | | 0.4423 | 3.0 | 405 | 1.2549 | | 0.4244 | 4.0 | 540 | 1.2665 | | 0.4051 | 5.0 | 675 | 1.2714 | | 0.3815 | 6.0 | 810 | 1.2959 | | 0.3546 | 7.0 | 945 | 1.3560 | | 0.3233 | 8.0 | 1080 | 1.4125 | | 0.2969 | 9.0 | 1215 | 1.4809 | | 0.2818 | 10.0 | 1350 | 1.5174 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0 - Pytorch 2.2.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1