File size: 2,053 Bytes
867bf73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: apache-2.0
base_model: google/mt5-base
tags:
- summarization
- generated_from_trainer
datasets:
- xlsum
metrics:
- rouge
model-index:
- name: mt5-base-xlsum
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: xlsum
      type: xlsum
      config: ukrainian
      split: train
      args: ukrainian
    metrics:
    - name: Rouge1
      type: rouge
      value: 2.98
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mt5-base-xlsum

This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the xlsum dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0396
- Rouge1: 2.98
- Rouge2: 0.1333
- Rougel: 3.0267
- Rougelsum: 2.9933

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 5.3745        | 1.0   | 500  | 2.5041          | 1.0696 | 0.13   | 1.062  | 1.0629    |
| 3.413         | 2.0   | 1000 | 2.2178          | 1.8333 | 0.1333 | 1.84   | 1.8633    |
| 3.1052        | 3.0   | 1500 | 2.0844          | 3.14   | 0.2667 | 3.18   | 3.1733    |
| 2.9673        | 4.0   | 2000 | 2.0396          | 2.98   | 0.1333 | 3.0267 | 2.9933    |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1