--- license: apache-2.0 base_model: google/mt5-small tags: - summarization - generated_from_trainer datasets: - xlsum metrics: - rouge model-index: - name: mt5-small-xlsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xlsum type: xlsum config: ukrainian split: train args: ukrainian metrics: - name: Rouge1 type: rouge value: 1.1945 --- # mt5-small-xlsum This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 2.8395 - Rouge1: 1.1945 - Rouge2: 0.1467 - Rougel: 1.1902 - Rougelsum: 1.196 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 11.9992 | 1.0 | 125 | 4.0495 | 0.3829 | 0.0 | 0.3905 | 0.3905 | | 5.8176 | 2.0 | 250 | 3.3431 | 0.491 | 0.0667 | 0.4988 | 0.4821 | | 4.9907 | 3.0 | 375 | 3.1548 | 0.6481 | 0.08 | 0.6766 | 0.6655 | | 4.6486 | 4.0 | 500 | 3.0347 | 1.0105 | 0.1467 | 1.0398 | 1.0274 | | 4.4541 | 5.0 | 625 | 2.9414 | 0.9581 | 0.1467 | 0.951 | 0.9643 | | 4.3195 | 6.0 | 750 | 2.8837 | 1.1129 | 0.1467 | 1.1245 | 1.1193 | | 4.2618 | 7.0 | 875 | 2.8473 | 1.1019 | 0.1467 | 1.1048 | 1.1224 | | 4.2228 | 8.0 | 1000 | 2.8395 | 1.1945 | 0.1467 | 1.1902 | 1.196 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1