#!/usr/bin/env python3 import torch import os from huggingface_hub import HfApi from pathlib import Path from diffusers.utils import load_image from PIL import Image import numpy as np from diffusers import ( ControlNetModel, StableDiffusionControlNetPipeline, DDIMScheduler, ) import sys checkpoint = sys.argv[1] # pre-process image and mask image = load_image("https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png").convert('RGB') mask_image = load_image("https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png").convert("L") # convert to float32 image = np.asarray(image, dtype=np.float32) mask_image = np.asarray(mask_image, dtype=np.float32) image[mask_image > 127] = -255.0 image = torch.from_numpy(image)[None].permute(0, 3, 1, 2) / 255.0 prompt = "A blue cat sitting on a park bench" controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16) pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16 ) pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() generator = torch.manual_seed(0) out_image = pipe(prompt, num_inference_steps=20, generator=generator, image=image, guidance_scale=9.0).images[0] path = os.path.join(Path.home(), "images", "aa.png") out_image.save(path) api = HfApi() api.upload_file( path_or_fileobj=path, path_in_repo=path.split("/")[-1], repo_id="patrickvonplaten/images", repo_type="dataset", ) print("https://huggingface.co/datasets/patrickvonplaten/images/blob/main/aa.png")