--- tags: - clip - llm-jp-clip - japanese-clip library_name: open_clip pipeline_tag: zero-shot-image-classification license: - apache-2.0 datasets: - laion/relaion2B-en-research-safe language: - ja --- # Model Card for llm-jp-clip-vit-base-patch16 # Model Details A CLIP ViT-B/16 model trained using [OpenCLIP](https://github.com/mlfoundations/open_clip) with the Japanese translation of the English subset of ReLAION-5B (https://huggingface.co/datasets/laion/relaion2B-en-research-safe), translated by [gemma-2-9b-it](https://huggingface.co/datasets/laion/relaion2B-en-research-safe). The total number of parameters of this model is 248M. # How to Use ## Installation ```bash $ pip install open_clip_torch ``` ## Zero-shot Image Classification ```python import open_clip model, preprocess = open_clip.create_model_from_pretrained('hf-hub:llm-jp/llm-jp-clip-vit-base-patch16') tokenizer = open_clip.get_tokenizer('hf-hub:llm-jp/llm-jp-clip-vit-base-patch16') import torch from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) image = preprocess(image).unsqueeze(0) text = tokenizer(["猫", "犬", "鳥"]) with torch.no_grad(), torch.cuda.amp.autocast(): image_features = model.encode_image(image) text_features = model.encode_text(text) image_features /= image_features.norm(dim=-1, keepdim=True) text_features /= text_features.norm(dim=-1, keepdim=True) text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1) print("Label probs:", text_probs) # Label probs: tensor([[9.9425e-01, 5.2273e-03, 5.2600e-04]]) ``` Reference: - [Using OpenCLIP at Hugging Face](https://huggingface.co/docs/hub/en/open_clip), HuggingFace Docs - OpenCLIP [repository](https://github.com/mlfoundations/open_clip) # Training Details ## Model Architecture - Text Encoder: RoBERTa base with llm-jp-tokenizer - Image Encoder: ViT-B/16 ## Training Data We used a Japanese-translated version of the relaion2B-en-research-safe dataset. The translation was performed using gemma-2-9b-it. Due to a 70% success rate in image downloads, the dataset size was 1.45 billion samples, and we processed it over 9 epochs (13 billion samples in total). # Evaluation Evaluation Code: https://github.com/llm-jp/clip-eval TODO: # LICENSE [The Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) Please also see Gemma Terms of Use (https://ai.google.dev/gemma/terms) as the training data is translated by [gemma-2-9b-it](https://huggingface.co/datasets/laion/relaion2B-en-research-safe). > 3.3 Generated Output > > Google claims no rights in Outputs you generate using Gemma. You and your users are solely responsible for Outputs and their subsequent uses. # Citation Bibtex: ``` TODO: ```