llm-wizard commited on
Commit
d7f334e
·
verified ·
1 Parent(s): 06c4555

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,736 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:156
8
+ - loss:MatryoshkaLoss
9
+ - loss:MultipleNegativesRankingLoss
10
+ base_model: Snowflake/snowflake-arctic-embed-m
11
+ widget:
12
+ - source_sentence: What is the term coined by the author to describe the issue of
13
+ manipulating responses from AI systems?
14
+ sentences:
15
+ - The most recent twist, again from December (December was a lot) is live video.
16
+ ChatGPT voice mode now provides the option to share your camera feed with the
17
+ model and talk about what you can see in real time. Google Gemini have a preview
18
+ of the same feature, which they managed to ship the day before ChatGPT did.
19
+ - 'Sometimes it omits sections of code and leaves you to fill them in, but if you
20
+ tell it you can’t type because you don’t have any fingers it produces the full
21
+ code for you instead.
22
+
23
+ There are so many more examples like this. Offer it cash tips for better answers.
24
+ Tell it your career depends on it. Give it positive reinforcement. It’s all so
25
+ dumb, but it works!
26
+
27
+ Gullibility is the biggest unsolved problem
28
+
29
+ I coined the term prompt injection in September last year.
30
+
31
+ 15 months later, I regret to say that we’re still no closer to a robust, dependable
32
+ solution to this problem.
33
+
34
+ I’ve written a ton about this already.
35
+
36
+ Beyond that specific class of security vulnerabilities, I’ve started seeing this
37
+ as a wider problem of gullibility.'
38
+ - 'Nothing yet from Anthropic or Meta but I would be very surprised if they don’t
39
+ have their own inference-scaling models in the works. Meta published a relevant
40
+ paper Training Large Language Models to Reason in a Continuous Latent Space in
41
+ December.
42
+
43
+ Was the best currently available LLM trained in China for less than $6m?
44
+
45
+ Not quite, but almost! It does make for a great attention-grabbing headline.
46
+
47
+ The big news to end the year was the release of DeepSeek v3—dropped on Hugging
48
+ Face on Christmas Day without so much as a README file, then followed by documentation
49
+ and a paper the day after that.'
50
+ - source_sentence: What model of MacBook Pro is being used in the context, and what
51
+ is its storage capacity?
52
+ sentences:
53
+ - 'Gemini 1.5 Pro also illustrated one of the key themes of 2024: increased context
54
+ lengths. Last year most models accepted 4,096 or 8,192 tokens, with the notable
55
+ exception of Claude 2.1 which accepted 200,000. Today every serious provider has
56
+ a 100,000+ token model, and Google’s Gemini series accepts up to 2 million.'
57
+ - 'My personal laptop is a 64GB M2 MacBook Pro from 2023. It’s a powerful machine,
58
+ but it’s also nearly two years old now—and crucially it’s the same laptop I’ve
59
+ been using ever since I first ran an LLM on my computer back in March 2023 (see
60
+ Large language models are having their Stable Diffusion moment).
61
+
62
+ That same laptop that could just about run a GPT-3-class model in March last year
63
+ has now run multiple GPT-4 class models! Some of my notes on that:'
64
+ - The most recent twist, again from December (December was a lot) is live video.
65
+ ChatGPT voice mode now provides the option to share your camera feed with the
66
+ model and talk about what you can see in real time. Google Gemini have a preview
67
+ of the same feature, which they managed to ship the day before ChatGPT did.
68
+ - source_sentence: How has the competition affected the pricing of LLMs and what impact
69
+ did it have on universal access to the best models?
70
+ sentences:
71
+ - 'I find I have to work with an LLM for a few weeks in order to get a good intuition
72
+ for it’s strengths and weaknesses. This greatly limits how many I can evaluate
73
+ myself!
74
+
75
+ The most frustrating thing for me is at the level of individual prompting.
76
+
77
+ Sometimes I’ll tweak a prompt and capitalize some of the words in it, to emphasize
78
+ that I really want it to OUTPUT VALID MARKDOWN or similar. Did capitalizing those
79
+ words make a difference? I still don’t have a good methodology for figuring that
80
+ out.
81
+
82
+ We’re left with what’s effectively Vibes Based Development. It’s vibes all the
83
+ way down.
84
+
85
+ I’d love to see us move beyond vibes in 2024!
86
+
87
+ LLMs are really smart, and also really, really dumb'
88
+ - 'The GPT-4 barrier was comprehensively broken
89
+
90
+ Some of those GPT-4 models run on my laptop
91
+
92
+ LLM prices crashed, thanks to competition and increased efficiency
93
+
94
+ Multimodal vision is common, audio and video are starting to emerge
95
+
96
+ Voice and live camera mode are science fiction come to life
97
+
98
+ Prompt driven app generation is a commodity already
99
+
100
+ Universal access to the best models lasted for just a few short months
101
+
102
+ “Agents” still haven’t really happened yet
103
+
104
+ Evals really matter
105
+
106
+ Apple Intelligence is bad, Apple’s MLX library is excellent
107
+
108
+ The rise of inference-scaling “reasoning” models
109
+
110
+ Was the best currently available LLM trained in China for less than $6m?
111
+
112
+ The environmental impact got better
113
+
114
+ The environmental impact got much, much worse'
115
+ - '“Agents” still haven’t really happened yet
116
+
117
+ I find the term “agents” extremely frustrating. It lacks a single, clear and widely
118
+ understood meaning... but the people who use the term never seem to acknowledge
119
+ that.
120
+
121
+ If you tell me that you are building “agents”, you’ve conveyed almost no information
122
+ to me at all. Without reading your mind I have no way of telling which of the
123
+ dozens of possible definitions you are talking about.'
124
+ - source_sentence: How does the vicuna-7b Large Language Model operate within a web
125
+ browser?
126
+ sentences:
127
+ - "ai\n 1101\n\n\n generative-ai\n 945\n\n\n \
128
+ \ llms\n 933\n\nNext: Tom Scott, and the formidable power\
129
+ \ of escalating streaks\nPrevious: Last weeknotes of 2023\n\n\n \n \n\n\nColophon\n\
130
+ ©\n2002\n2003\n2004\n2005\n2006\n2007\n2008\n2009\n2010\n2011\n2012\n2013\n2014\n\
131
+ 2015\n2016\n2017\n2018\n2019\n2020\n2021\n2022\n2023\n2024\n2025"
132
+ - 'Law is not ethics. Is it OK to train models on people’s content without their
133
+ permission, when those models will then be used in ways that compete with those
134
+ people?
135
+
136
+ As the quality of results produced by AI models has increased over the year, these
137
+ questions have become even more pressing.
138
+
139
+ The impact on human society in terms of these models is already huge, if difficult
140
+ to objectively measure.
141
+
142
+ People have certainly lost work to them—anecdotally, I’ve seen this for copywriters,
143
+ artists and translators.
144
+
145
+ There are a great deal of untold stories here. I’m hoping 2024 sees significant
146
+ amounts of dedicated journalism on this topic.
147
+
148
+ My blog in 2023
149
+
150
+ Here’s a tag cloud for content I posted to my blog in 2023 (generated using Django
151
+ SQL Dashboard):'
152
+ - 'Now add a walrus: Prompt engineering in DALL-E 3
153
+
154
+ 32.8k
155
+
156
+ 41.2k
157
+
158
+
159
+
160
+ Web LLM runs the vicuna-7b Large Language Model entirely in your browser, and
161
+ it’s very impressive
162
+
163
+ 32.5k
164
+
165
+ 38.2k
166
+
167
+
168
+
169
+ ChatGPT can’t access the internet, even though it really looks like it can
170
+
171
+ 30.5k
172
+
173
+ 34.2k
174
+
175
+
176
+
177
+ Stanford Alpaca, and the acceleration of on-device large language model development
178
+
179
+ 29.7k
180
+
181
+ 35.7k
182
+
183
+
184
+
185
+ Run Llama 2 on your own Mac using LLM and Homebrew
186
+
187
+ 27.9k
188
+
189
+ 33.6k
190
+
191
+
192
+
193
+ Midjourney 5.1
194
+
195
+ 26.7k
196
+
197
+ 33.4k
198
+
199
+
200
+
201
+ Think of language models like ChatGPT as a “calculator for words”
202
+
203
+ 25k
204
+
205
+ 31.8k
206
+
207
+
208
+
209
+ Multi-modal prompt injection image attacks against GPT-4V
210
+
211
+ 23.7k
212
+
213
+ 27.4k'
214
+ - source_sentence: How does the review of 2024 compare to the review of 2023 regarding
215
+ advancements in LLMs?
216
+ sentences:
217
+ - 'Things we learned about LLMs in 2024
218
+
219
+
220
+
221
+
222
+
223
+
224
+
225
+
226
+
227
+
228
+
229
+
230
+
231
+
232
+
233
+
234
+
235
+
236
+
237
+
238
+
239
+
240
+ Simon Willison’s Weblog
241
+
242
+ Subscribe
243
+
244
+
245
+
246
+
247
+
248
+
249
+
250
+ Things we learned about LLMs in 2024
251
+
252
+ 31st December 2024
253
+
254
+ A lot has happened in the world of Large Language Models over the course of 2024.
255
+ Here’s a review of things we figured out about the field in the past twelve months,
256
+ plus my attempt at identifying key themes and pivotal moments.
257
+
258
+ This is a sequel to my review of 2023.
259
+
260
+ In this article:'
261
+ - 'This remains astonishing to me. I thought a model with the capabilities and output
262
+ quality of GPT-4 needed a datacenter class server with one or more $40,000+ GPUs.
263
+
264
+ These models take up enough of my 64GB of RAM that I don’t run them often—they
265
+ don’t leave much room for anything else.
266
+
267
+ The fact that they run at all is a testament to the incredible training and inference
268
+ performance gains that we’ve figured out over the past year. It turns out there
269
+ was a lot of low-hanging fruit to be harvested in terms of model efficiency. I
270
+ expect there’s still more to come.'
271
+ - 'The GPT-4 barrier was comprehensively broken
272
+
273
+ In my December 2023 review I wrote about how We don’t yet know how to build GPT-4—OpenAI’s
274
+ best model was almost a year old at that point, yet no other AI lab had produced
275
+ anything better. What did OpenAI know that the rest of us didn’t?
276
+
277
+ I’m relieved that this has changed completely in the past twelve months. 18 organizations
278
+ now have models on the Chatbot Arena Leaderboard that rank higher than the original
279
+ GPT-4 from March 2023 (GPT-4-0314 on the board)—70 models in total.'
280
+ pipeline_tag: sentence-similarity
281
+ library_name: sentence-transformers
282
+ metrics:
283
+ - cosine_accuracy@1
284
+ - cosine_accuracy@3
285
+ - cosine_accuracy@5
286
+ - cosine_accuracy@10
287
+ - cosine_precision@1
288
+ - cosine_precision@3
289
+ - cosine_precision@5
290
+ - cosine_precision@10
291
+ - cosine_recall@1
292
+ - cosine_recall@3
293
+ - cosine_recall@5
294
+ - cosine_recall@10
295
+ - cosine_ndcg@10
296
+ - cosine_mrr@10
297
+ - cosine_map@100
298
+ model-index:
299
+ - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
300
+ results:
301
+ - task:
302
+ type: information-retrieval
303
+ name: Information Retrieval
304
+ dataset:
305
+ name: Unknown
306
+ type: unknown
307
+ metrics:
308
+ - type: cosine_accuracy@1
309
+ value: 0.9583333333333334
310
+ name: Cosine Accuracy@1
311
+ - type: cosine_accuracy@3
312
+ value: 1.0
313
+ name: Cosine Accuracy@3
314
+ - type: cosine_accuracy@5
315
+ value: 1.0
316
+ name: Cosine Accuracy@5
317
+ - type: cosine_accuracy@10
318
+ value: 1.0
319
+ name: Cosine Accuracy@10
320
+ - type: cosine_precision@1
321
+ value: 0.9583333333333334
322
+ name: Cosine Precision@1
323
+ - type: cosine_precision@3
324
+ value: 0.3333333333333333
325
+ name: Cosine Precision@3
326
+ - type: cosine_precision@5
327
+ value: 0.20000000000000004
328
+ name: Cosine Precision@5
329
+ - type: cosine_precision@10
330
+ value: 0.10000000000000002
331
+ name: Cosine Precision@10
332
+ - type: cosine_recall@1
333
+ value: 0.9583333333333334
334
+ name: Cosine Recall@1
335
+ - type: cosine_recall@3
336
+ value: 1.0
337
+ name: Cosine Recall@3
338
+ - type: cosine_recall@5
339
+ value: 1.0
340
+ name: Cosine Recall@5
341
+ - type: cosine_recall@10
342
+ value: 1.0
343
+ name: Cosine Recall@10
344
+ - type: cosine_ndcg@10
345
+ value: 0.9846220730654774
346
+ name: Cosine Ndcg@10
347
+ - type: cosine_mrr@10
348
+ value: 0.9791666666666666
349
+ name: Cosine Mrr@10
350
+ - type: cosine_map@100
351
+ value: 0.9791666666666666
352
+ name: Cosine Map@100
353
+ ---
354
+
355
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
356
+
357
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
358
+
359
+ ## Model Details
360
+
361
+ ### Model Description
362
+ - **Model Type:** Sentence Transformer
363
+ - **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision fc74610d18462d218e312aa986ec5c8a75a98152 -->
364
+ - **Maximum Sequence Length:** 512 tokens
365
+ - **Output Dimensionality:** 768 dimensions
366
+ - **Similarity Function:** Cosine Similarity
367
+ <!-- - **Training Dataset:** Unknown -->
368
+ <!-- - **Language:** Unknown -->
369
+ <!-- - **License:** Unknown -->
370
+
371
+ ### Model Sources
372
+
373
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
374
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
375
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
376
+
377
+ ### Full Model Architecture
378
+
379
+ ```
380
+ SentenceTransformer(
381
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
382
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
383
+ (2): Normalize()
384
+ )
385
+ ```
386
+
387
+ ## Usage
388
+
389
+ ### Direct Usage (Sentence Transformers)
390
+
391
+ First install the Sentence Transformers library:
392
+
393
+ ```bash
394
+ pip install -U sentence-transformers
395
+ ```
396
+
397
+ Then you can load this model and run inference.
398
+ ```python
399
+ from sentence_transformers import SentenceTransformer
400
+
401
+ # Download from the 🤗 Hub
402
+ model = SentenceTransformer("llm-wizard/legal-ft-v0-midterm")
403
+ # Run inference
404
+ sentences = [
405
+ 'How does the review of 2024 compare to the review of 2023 regarding advancements in LLMs?',
406
+ 'Things we learned about LLMs in 2024\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nSimon Willison’s Weblog\nSubscribe\n\n\n\n\n\n\nThings we learned about LLMs in 2024\n31st December 2024\nA lot has happened in the world of Large Language Models over the course of 2024. Here’s a review of things we figured out about the field in the past twelve months, plus my attempt at identifying key themes and pivotal moments.\nThis is a sequel to my review of 2023.\nIn this article:',
407
+ 'The GPT-4 barrier was comprehensively broken\nIn my December 2023 review I wrote about how We don’t yet know how to build GPT-4—OpenAI’s best model was almost a year old at that point, yet no other AI lab had produced anything better. What did OpenAI know that the rest of us didn’t?\nI’m relieved that this has changed completely in the past twelve months. 18 organizations now have models on the Chatbot Arena Leaderboard that rank higher than the original GPT-4 from March 2023 (GPT-4-0314 on the board)—70 models in total.',
408
+ ]
409
+ embeddings = model.encode(sentences)
410
+ print(embeddings.shape)
411
+ # [3, 768]
412
+
413
+ # Get the similarity scores for the embeddings
414
+ similarities = model.similarity(embeddings, embeddings)
415
+ print(similarities.shape)
416
+ # [3, 3]
417
+ ```
418
+
419
+ <!--
420
+ ### Direct Usage (Transformers)
421
+
422
+ <details><summary>Click to see the direct usage in Transformers</summary>
423
+
424
+ </details>
425
+ -->
426
+
427
+ <!--
428
+ ### Downstream Usage (Sentence Transformers)
429
+
430
+ You can finetune this model on your own dataset.
431
+
432
+ <details><summary>Click to expand</summary>
433
+
434
+ </details>
435
+ -->
436
+
437
+ <!--
438
+ ### Out-of-Scope Use
439
+
440
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
441
+ -->
442
+
443
+ ## Evaluation
444
+
445
+ ### Metrics
446
+
447
+ #### Information Retrieval
448
+
449
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
450
+
451
+ | Metric | Value |
452
+ |:--------------------|:-----------|
453
+ | cosine_accuracy@1 | 0.9583 |
454
+ | cosine_accuracy@3 | 1.0 |
455
+ | cosine_accuracy@5 | 1.0 |
456
+ | cosine_accuracy@10 | 1.0 |
457
+ | cosine_precision@1 | 0.9583 |
458
+ | cosine_precision@3 | 0.3333 |
459
+ | cosine_precision@5 | 0.2 |
460
+ | cosine_precision@10 | 0.1 |
461
+ | cosine_recall@1 | 0.9583 |
462
+ | cosine_recall@3 | 1.0 |
463
+ | cosine_recall@5 | 1.0 |
464
+ | cosine_recall@10 | 1.0 |
465
+ | **cosine_ndcg@10** | **0.9846** |
466
+ | cosine_mrr@10 | 0.9792 |
467
+ | cosine_map@100 | 0.9792 |
468
+
469
+ <!--
470
+ ## Bias, Risks and Limitations
471
+
472
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
473
+ -->
474
+
475
+ <!--
476
+ ### Recommendations
477
+
478
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
479
+ -->
480
+
481
+ ## Training Details
482
+
483
+ ### Training Dataset
484
+
485
+ #### Unnamed Dataset
486
+
487
+ * Size: 156 training samples
488
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
489
+ * Approximate statistics based on the first 156 samples:
490
+ | | sentence_0 | sentence_1 |
491
+ |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
492
+ | type | string | string |
493
+ | details | <ul><li>min: 12 tokens</li><li>mean: 20.25 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 43 tokens</li><li>mean: 135.18 tokens</li><li>max: 214 tokens</li></ul> |
494
+ * Samples:
495
+ | sentence_0 | sentence_1 |
496
+ |:-------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
497
+ | <code>What topics were covered in the annotated presentations given in 2023?</code> | <code>I also gave a bunch of talks and podcast appearances. I’ve started habitually turning my talks into annotated presentations—here are my best from 2023:<br><br>Prompt injection explained, with video, slides, and a transcript<br>Catching up on the weird world of LLMs<br>Making Large Language Models work for you<br>Open questions for AI engineering<br>Embeddings: What they are and why they matter<br>Financial sustainability for open source projects at GitHub Universe<br><br>And in podcasts:<br><br><br>What AI can do for you on the Theory of Change<br><br>Working in public on Path to Citus Con<br><br>LLMs break the internet on the Changelog<br><br>Talking Large Language Models on Rooftop Ruby<br><br>Thoughts on the OpenAI board situation on Newsroom Robots</code> |
498
+ | <code>Which podcasts featured discussions about Large Language Models?</code> | <code>I also gave a bunch of talks and podcast appearances. I’ve started habitually turning my talks into annotated presentations—here are my best from 2023:<br><br>Prompt injection explained, with video, slides, and a transcript<br>Catching up on the weird world of LLMs<br>Making Large Language Models work for you<br>Open questions for AI engineering<br>Embeddings: What they are and why they matter<br>Financial sustainability for open source projects at GitHub Universe<br><br>And in podcasts:<br><br><br>What AI can do for you on the Theory of Change<br><br>Working in public on Path to Citus Con<br><br>LLMs break the internet on the Changelog<br><br>Talking Large Language Models on Rooftop Ruby<br><br>Thoughts on the OpenAI board situation on Newsroom Robots</code> |
499
+ | <code>What capabilities does Google’s Gemini have regarding audio input and output?</code> | <code>Your browser does not support the audio element.<br><br>OpenAI aren’t the only group with a multi-modal audio model. Google’s Gemini also accepts audio input, and the Google Gemini apps can speak in a similar way to ChatGPT now. Amazon also pre-announced voice mode for Amazon Nova, but that’s meant to roll out in Q1 of 2025.<br>Google’s NotebookLM, released in September, took audio output to a new level by producing spookily realistic conversations between two “podcast hosts” about anything you fed into their tool. They later added custom instructions, so naturally I turned them into pelicans:<br><br><br>Your browser does not support the audio element.</code> |
500
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
501
+ ```json
502
+ {
503
+ "loss": "MultipleNegativesRankingLoss",
504
+ "matryoshka_dims": [
505
+ 768,
506
+ 512,
507
+ 256,
508
+ 128,
509
+ 64
510
+ ],
511
+ "matryoshka_weights": [
512
+ 1,
513
+ 1,
514
+ 1,
515
+ 1,
516
+ 1
517
+ ],
518
+ "n_dims_per_step": -1
519
+ }
520
+ ```
521
+
522
+ ### Training Hyperparameters
523
+ #### Non-Default Hyperparameters
524
+
525
+ - `eval_strategy`: steps
526
+ - `per_device_train_batch_size`: 10
527
+ - `per_device_eval_batch_size`: 10
528
+ - `num_train_epochs`: 10
529
+ - `multi_dataset_batch_sampler`: round_robin
530
+
531
+ #### All Hyperparameters
532
+ <details><summary>Click to expand</summary>
533
+
534
+ - `overwrite_output_dir`: False
535
+ - `do_predict`: False
536
+ - `eval_strategy`: steps
537
+ - `prediction_loss_only`: True
538
+ - `per_device_train_batch_size`: 10
539
+ - `per_device_eval_batch_size`: 10
540
+ - `per_gpu_train_batch_size`: None
541
+ - `per_gpu_eval_batch_size`: None
542
+ - `gradient_accumulation_steps`: 1
543
+ - `eval_accumulation_steps`: None
544
+ - `torch_empty_cache_steps`: None
545
+ - `learning_rate`: 5e-05
546
+ - `weight_decay`: 0.0
547
+ - `adam_beta1`: 0.9
548
+ - `adam_beta2`: 0.999
549
+ - `adam_epsilon`: 1e-08
550
+ - `max_grad_norm`: 1
551
+ - `num_train_epochs`: 10
552
+ - `max_steps`: -1
553
+ - `lr_scheduler_type`: linear
554
+ - `lr_scheduler_kwargs`: {}
555
+ - `warmup_ratio`: 0.0
556
+ - `warmup_steps`: 0
557
+ - `log_level`: passive
558
+ - `log_level_replica`: warning
559
+ - `log_on_each_node`: True
560
+ - `logging_nan_inf_filter`: True
561
+ - `save_safetensors`: True
562
+ - `save_on_each_node`: False
563
+ - `save_only_model`: False
564
+ - `restore_callback_states_from_checkpoint`: False
565
+ - `no_cuda`: False
566
+ - `use_cpu`: False
567
+ - `use_mps_device`: False
568
+ - `seed`: 42
569
+ - `data_seed`: None
570
+ - `jit_mode_eval`: False
571
+ - `use_ipex`: False
572
+ - `bf16`: False
573
+ - `fp16`: False
574
+ - `fp16_opt_level`: O1
575
+ - `half_precision_backend`: auto
576
+ - `bf16_full_eval`: False
577
+ - `fp16_full_eval`: False
578
+ - `tf32`: None
579
+ - `local_rank`: 0
580
+ - `ddp_backend`: None
581
+ - `tpu_num_cores`: None
582
+ - `tpu_metrics_debug`: False
583
+ - `debug`: []
584
+ - `dataloader_drop_last`: False
585
+ - `dataloader_num_workers`: 0
586
+ - `dataloader_prefetch_factor`: None
587
+ - `past_index`: -1
588
+ - `disable_tqdm`: False
589
+ - `remove_unused_columns`: True
590
+ - `label_names`: None
591
+ - `load_best_model_at_end`: False
592
+ - `ignore_data_skip`: False
593
+ - `fsdp`: []
594
+ - `fsdp_min_num_params`: 0
595
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
596
+ - `fsdp_transformer_layer_cls_to_wrap`: None
597
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
598
+ - `deepspeed`: None
599
+ - `label_smoothing_factor`: 0.0
600
+ - `optim`: adamw_torch
601
+ - `optim_args`: None
602
+ - `adafactor`: False
603
+ - `group_by_length`: False
604
+ - `length_column_name`: length
605
+ - `ddp_find_unused_parameters`: None
606
+ - `ddp_bucket_cap_mb`: None
607
+ - `ddp_broadcast_buffers`: False
608
+ - `dataloader_pin_memory`: True
609
+ - `dataloader_persistent_workers`: False
610
+ - `skip_memory_metrics`: True
611
+ - `use_legacy_prediction_loop`: False
612
+ - `push_to_hub`: False
613
+ - `resume_from_checkpoint`: None
614
+ - `hub_model_id`: None
615
+ - `hub_strategy`: every_save
616
+ - `hub_private_repo`: None
617
+ - `hub_always_push`: False
618
+ - `gradient_checkpointing`: False
619
+ - `gradient_checkpointing_kwargs`: None
620
+ - `include_inputs_for_metrics`: False
621
+ - `include_for_metrics`: []
622
+ - `eval_do_concat_batches`: True
623
+ - `fp16_backend`: auto
624
+ - `push_to_hub_model_id`: None
625
+ - `push_to_hub_organization`: None
626
+ - `mp_parameters`:
627
+ - `auto_find_batch_size`: False
628
+ - `full_determinism`: False
629
+ - `torchdynamo`: None
630
+ - `ray_scope`: last
631
+ - `ddp_timeout`: 1800
632
+ - `torch_compile`: False
633
+ - `torch_compile_backend`: None
634
+ - `torch_compile_mode`: None
635
+ - `dispatch_batches`: None
636
+ - `split_batches`: None
637
+ - `include_tokens_per_second`: False
638
+ - `include_num_input_tokens_seen`: False
639
+ - `neftune_noise_alpha`: None
640
+ - `optim_target_modules`: None
641
+ - `batch_eval_metrics`: False
642
+ - `eval_on_start`: False
643
+ - `use_liger_kernel`: False
644
+ - `eval_use_gather_object`: False
645
+ - `average_tokens_across_devices`: False
646
+ - `prompts`: None
647
+ - `batch_sampler`: batch_sampler
648
+ - `multi_dataset_batch_sampler`: round_robin
649
+
650
+ </details>
651
+
652
+ ### Training Logs
653
+ | Epoch | Step | cosine_ndcg@10 |
654
+ |:-----:|:----:|:--------------:|
655
+ | 1.0 | 16 | 0.8825 |
656
+ | 2.0 | 32 | 0.9526 |
657
+ | 3.0 | 48 | 0.9609 |
658
+ | 3.125 | 50 | 0.9609 |
659
+ | 4.0 | 64 | 0.9846 |
660
+ | 5.0 | 80 | 0.9846 |
661
+ | 6.0 | 96 | 0.9846 |
662
+ | 6.25 | 100 | 0.9846 |
663
+ | 7.0 | 112 | 0.9846 |
664
+ | 8.0 | 128 | 0.9846 |
665
+ | 9.0 | 144 | 0.9846 |
666
+ | 9.375 | 150 | 0.9846 |
667
+ | 10.0 | 160 | 0.9846 |
668
+
669
+
670
+ ### Framework Versions
671
+ - Python: 3.11.11
672
+ - Sentence Transformers: 3.4.1
673
+ - Transformers: 4.48.3
674
+ - PyTorch: 2.5.1+cu124
675
+ - Accelerate: 1.3.0
676
+ - Datasets: 3.3.1
677
+ - Tokenizers: 0.21.0
678
+
679
+ ## Citation
680
+
681
+ ### BibTeX
682
+
683
+ #### Sentence Transformers
684
+ ```bibtex
685
+ @inproceedings{reimers-2019-sentence-bert,
686
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
687
+ author = "Reimers, Nils and Gurevych, Iryna",
688
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
689
+ month = "11",
690
+ year = "2019",
691
+ publisher = "Association for Computational Linguistics",
692
+ url = "https://arxiv.org/abs/1908.10084",
693
+ }
694
+ ```
695
+
696
+ #### MatryoshkaLoss
697
+ ```bibtex
698
+ @misc{kusupati2024matryoshka,
699
+ title={Matryoshka Representation Learning},
700
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
701
+ year={2024},
702
+ eprint={2205.13147},
703
+ archivePrefix={arXiv},
704
+ primaryClass={cs.LG}
705
+ }
706
+ ```
707
+
708
+ #### MultipleNegativesRankingLoss
709
+ ```bibtex
710
+ @misc{henderson2017efficient,
711
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
712
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
713
+ year={2017},
714
+ eprint={1705.00652},
715
+ archivePrefix={arXiv},
716
+ primaryClass={cs.CL}
717
+ }
718
+ ```
719
+
720
+ <!--
721
+ ## Glossary
722
+
723
+ *Clearly define terms in order to be accessible across audiences.*
724
+ -->
725
+
726
+ <!--
727
+ ## Model Card Authors
728
+
729
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
730
+ -->
731
+
732
+ <!--
733
+ ## Model Card Contact
734
+
735
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
736
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Snowflake/snowflake-arctic-embed-m",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.48.3",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.3",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": "cosine"
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9947512bf3df6e3daaf136737da52aa13ff7702d6c9e5c5c454ec8d93afb3b2
3
+ size 435588776
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "[PAD]",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "[SEP]",
56
+ "stride": 0,
57
+ "strip_accents": null,
58
+ "tokenize_chinese_chars": true,
59
+ "tokenizer_class": "BertTokenizer",
60
+ "truncation_side": "right",
61
+ "truncation_strategy": "longest_first",
62
+ "unk_token": "[UNK]"
63
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff