--- license: apache-2.0 inference: false --- BLING-QWEN-NANO-TOOL **bling-qwen-nano-tool** is a RAG-finetuned version on Qwen2-0.5B for use in fact-based context question-answering, packaged with 4_K_M GGUF quantization, providing a very fast, very small inference implementation for use on CPUs. To pull the model via API: from huggingface_hub import snapshot_download snapshot_download("llmware/bling-qwen-nano-tool", local_dir="/path/on/your/machine/", local_dir_use_symlinks=False) ## Benchmark Tests Evaluated against the benchmark test: RAG-Instruct-Benchmark-Tester 1 Test Run with sample=False & temperature=0.0 (deterministic output) - 1 point for correct answer, 0.5 point for partial correct or blank / NF, 0.0 points for incorrect, and -1 points for hallucinations. --Accuracy Score: **81.0** correct out of 100 --Not Found Classification: 65.0% --Boolean: 62.5% --Math/Logic: 42.5% --Complex Questions (1-5): 3 (Average for ~1B model) --Summarization Quality (1-5): 3 (Average) --Hallucinations: No hallucinations observed in test runs. For test run results (and good indicator of target use cases), please see the files ("core_rag_test" and "answer_sheet" in this repo). Load in your favorite GGUF inference engine, or try with llmware as follows: from llmware.models import ModelCatalog model = ModelCatalog().load_model("bling-qwen-nano-tool") response = model.inference(query, add_context=text_sample) Note: please review [**config.json**](https://huggingface.co/llmware/bling-qwen-nano-tool/blob/main/config.json) in the repository for prompt wrapping information, details on the model, and full test set. ### Model Description - **Developed by:** llmware - **Model type:** GGUF - **Language(s) (NLP):** English - **License:** Apache 2.0 ## Model Card Contact Darren Oberst & llmware team