File size: 2,907 Bytes
9becace
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

import time
import os
import json
from werkzeug.utils import secure_filename
import re
import ast
import sqlite3
import random

from transformers import AutoModelForCausalLM, AutoTokenizer

from llmware.models import ModelCatalog
from llmware.prompts import Prompt

def model_test_run_general():

    t0 = time.time()

    model_name = "llmware/slim-sql-1b-v0"

    print("update: model_name - ", model_name)

    custom_hf_model = AutoModelForCausalLM.from_pretrained(model_name,trust_remote_code=True)

    hf_tokenizer = AutoTokenizer.from_pretrained(model_name)

    #   now, we have 'imported' our own custom 'instruct' model into llmware
    model = ModelCatalog().load_hf_generative_model(custom_hf_model, hf_tokenizer, instruction_following=False,
                                                    prompt_wrapper="human_bot")

    model.temperature = 0.3
    # run direct inference on model
    print("\nupdate: Starting Generative Instruct Custom Fine-tuned Test")

    t1 = time.time()

    print("update: time loading model - ", t1 - t0)

    fp = ""
    fn = "sql_test_100_simple_s.jsonl"

    opened_file = open(os.path.join(fp, fn), "r")

    prompt_list = []

    for i, rows in enumerate(opened_file):
        # print("update: ", i, rows)
        rows = json.loads(rows)
        new_entry = {"question": rows["question"],
                     "answer": rows["answer"],
                     "context": rows["context"]}

        prompt_list.append(new_entry)

    random.shuffle(prompt_list)

    total_response_output = []
    perfect_match = 0

    for i, entries in enumerate(prompt_list):
        prompt = entries["question"]
        context = re.sub("[\n\r]","", entries["context"])
        context = re.sub("\s+", " ", context)
        context = re.sub("\"", "", context)

        answer = ""

        if "answer" in entries:
            answer = entries["answer"]

        output = model.inference(prompt, add_context=context, add_prompt_engineering=True)

        print("\nupdate: model question - ", prompt)

        llm_response = re.sub("['\"]", "", output["llm_response"])
        answer = re.sub("['\"]", "", answer)

        print("update: model response - ", i, llm_response)
        print("update: model gold answer - ", answer)

        if llm_response.strip().lower() == answer.strip().lower():
            perfect_match += 1
            print("update: 100% MATCH")

        print("update: perfect match accuracy - ", perfect_match / (i+1))

        core_output = {"number": i,
                       "llm_response": output["llm_response"],
                       "gold_answer": answer,
                       "prompt": prompt,
                       "usage": output["usage"]}

        total_response_output.append(core_output)

    t2 = time.time()

    print("update: total processing time: ", t2-t1)

    return total_response_output

output = model_test_run_general()