File size: 1,870 Bytes
13b141c
814ff5f
 
13b141c
 
814ff5f
13b141c
 
 
 
814ff5f
13b141c
a391975
13b141c
 
 
 
 
 
 
814ff5f
13b141c
 
 
 
 
 
 
814ff5f
13b141c
 
 
814ff5f
13b141c
 
814ff5f
13b141c
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
---
license: apache-2.0  
inference: false
---

# SLIM-SUMMARY-PHI-3-GGUF

<!-- Provide a quick summary of what the model is/does. -->


**slim-summary-phi-3** is a finetune of phi-3 mini (3.8B parameters) to implement a function-calling summarization model, and then packaged as 4_K_M quantized GGUF, providing a small, fast inference implementation, to provide high-quality summarizations of complex business documents, on a small, specialized locally-deployable model with summary output structured as a python list of key points.  

The model takes as input a text passage, an optional parameter with a focusing phrase or query, and an experimental optional (N) parameter, which is used to guide the model to a specific number of items to return in a summary list.  

Please see the usage notes at:  [**slim-summary**](https://huggingface.co/llmware/slim-summary) 


To pull the model via API:  

    from huggingface_hub import snapshot_download           
    snapshot_download("llmware/slim-summary-phi-3-gguf", local_dir="/path/on/your/machine/", local_dir_use_symlinks=False)  
    

Load in your favorite GGUF inference engine, or try with llmware as follows:

    from llmware.models import ModelCatalog  
    
    # to load the model and make a basic inference
    model = ModelCatalog().load_model("slim-summary-phi-3-gguf")
    response = model.function_call(text_sample)  

    # this one line will download the model and run a series of tests
    ModelCatalog().tool_test_run("slim-summary-phi-3-gguf", verbose=True)  


Note: please review [**config.json**](https://huggingface.co/llmware/slim-summary-phi-3-gguf/blob/main/config.json) in the repository for prompt wrapping information, details on the model, and full test set.  


## Model Card Contact

Darren Oberst & llmware team  

[Any questions? Join us on Discord](https://discord.gg/MhZn5Nc39h)