unsubscribe commited on
Commit
5ae26f2
·
1 Parent(s): 0935c6f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +108 -1
README.md CHANGED
@@ -3,4 +3,111 @@ license: apache-2.0
3
  tags:
4
  - text-generation-inference
5
  pipeline_tag: text-generation
6
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  tags:
4
  - text-generation-inference
5
  pipeline_tag: text-generation
6
+ ---
7
+
8
+ <div align="center">
9
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/64ccdc322e592905f922a06e/VhwQtaklohkUXFWkjA-3M.png" width="450"/>
10
+
11
+ English | [简体中文](README_zh-CN.md)
12
+
13
+ </div>
14
+
15
+ <p align="center">
16
+ 👋 join us on <a href="https://twitter.com/intern_lm" target="_blank">Twitter</a>, <a href="https://discord.gg/xa29JuW87d" target="_blank">Discord</a> and <a href="https://r.vansin.top/?r=internwx" target="_blank">WeChat</a>
17
+ </p>
18
+
19
+
20
+ # W4A16 LLM Model Deployment
21
+
22
+ LMDeploy supports LLM model inference of 4-bit weight, with the minimum requirement for NVIDIA graphics cards being sm80.
23
+
24
+ Before proceeding with the inference, please ensure that lmdeploy(>=v0.0.4) is installed.
25
+
26
+ ```shell
27
+ pip install lmdeploy
28
+ ```
29
+
30
+ ## 4-bit LLM model Inference
31
+
32
+ You can download the pre-quantized 4-bit weight models from LMDeploy's [model zoo](https://huggingface.co/lmdeploy) and conduct inference using the following command.
33
+
34
+ Alternatively, you can quantize 16-bit weights to 4-bit weights following the ["4-bit Weight Quantization"](#4-bit-weight-quantization) section, and then perform inference as per the below instructions.
35
+
36
+
37
+ ```shell
38
+ git-lfs install
39
+ git clone https://huggingface.co/lmdeploy/internlm-chat-7b-w4
40
+ ```
41
+
42
+ As demonstrated in the command below, first convert the model's layout using `turbomind.deploy`, and then you can interact with the AI assistant in the terminal
43
+
44
+ ```shell
45
+
46
+ ## Convert the model's layout and store it in the default path, ./workspace.
47
+ python3 -m lmdeploy.serve.turbomind.deploy \
48
+ --model-name internlm \
49
+ --model-path ./internlm-chat-7b-w4 \
50
+ --model-format awq \
51
+ --group-size 128
52
+
53
+ ## inference
54
+ python3 -m lmdeploy.turbomind.chat ./workspace
55
+ ```
56
+
57
+ ## Serve with gradio
58
+
59
+ If you wish to interact with the model via web ui, please initiate the gradio server as indicated below:
60
+
61
+ ```shell
62
+ python3 -m lmdeploy.serve.turbomind ./workspace --server_name {ip_addr} ----server_port {port}
63
+ ```
64
+
65
+ Subsequently, you can open the website `http://{ip_addr}:{port}` in your browser and interact with the model
66
+
67
+ ## Inference Performance
68
+
69
+ We benchmarked the Llama 2 7B and 13B with 4-bit quantization on NVIDIA GeForce RTX 4090 using [profile_generation.py](https://github.com/InternLM/lmdeploy/blob/main/benchmark/profile_generation.py). And we measure the token generation throughput (tokens/s) by setting a single prompt token and generating 512 tokens. All the results are measured for single batch inference.
70
+
71
+ | model | llm-awq | mlc-llm | turbomind |
72
+ | ----------- | ------- | ------- | --------- |
73
+ | Llama 2 7B | 112.9 | 159.4 | 206.4 |
74
+ | Llama 2 13B | N/A | 90.7 | 115.8 |
75
+
76
+ ```shell
77
+ python benchmark/profile_generation.py \
78
+ ./workspace \
79
+ --concurrency 1 --input_seqlen 1 --output_seqlen 512
80
+ ```
81
+
82
+ ## 4-bit Weight Quantization
83
+
84
+ It includes two steps:
85
+
86
+ - generate quantization parameter
87
+ - quantize model according to the parameter
88
+
89
+ ### Step 1: Generate Quantization Parameter
90
+
91
+ ```shell
92
+ python3 -m lmdeploy.lite.apis.calibrate \
93
+ --model $HF_MODEL \
94
+ --calib_dataset 'c4' \ # Calibration dataset, supports c4, ptb, wikitext2, pileval
95
+ --calib_samples 128 \ # Number of samples in the calibration set, if memory is insufficient, you can appropriately reduce this
96
+ --calib_seqlen 2048 \ # Length of a single piece of text, if memory is insufficient, you can appropriately reduce this
97
+ --work_dir $WORK_DIR \ # Folder storing Pytorch format quantization statistics parameters and post-quantization weight
98
+ ```
99
+
100
+ ### Step2: Quantize Weights
101
+
102
+ LMDeploy employs AWQ algorithm for model weight quantization.
103
+
104
+ ```shell
105
+ python3 -m lmdeploy.lite.apis.auto_awq \
106
+ --model $HF_MODEL \
107
+ --w_bits 4 \ # Bit number for weight quantization
108
+ --w_sym False \ # Whether to use symmetric quantization for weights
109
+ --w_group_size 128 \ # Group size for weight quantization statistics
110
+ --work_dir $WORK_DIR \ # Directory saving quantization parameters from Step 1
111
+ ```
112
+
113
+ After the quantization is complete, the quantized model is saved to `$WORK_DIR`. Then you can proceed with model inference according to the instructions in the ["4-Bit Weight Model Inference"](#4-bit-llm-model-inference) section.