--- datasets: - lmms-lab/LLaVA-OneVision-Data - lmms-lab/LLaVA-Video-178K language: - en library_name: transformers license: apache-2.0 metrics: - accuracy tags: - multimodal pipeline_tag: video-text-to-text model-index: - name: LLaVA-Video-7B-Qwen2 results: - task: type: multimodal dataset: name: ActNet-QA type: actnet-qa metrics: - type: accuracy value: 56.5 name: accuracy verified: true - task: type: multimodal dataset: name: EgoSchema type: egoschema metrics: - type: accuracy value: 57.3 name: accuracy verified: true - task: type: multimodal dataset: name: MLVU type: mlvu metrics: - type: accuracy value: 70.8 name: accuracy verified: true - task: type: multimodal dataset: name: MVBench type: mvbench metrics: - type: accuracy value: 58.6 name: accuracy verified: true - task: type: multimodal dataset: name: NextQA type: nextqa metrics: - type: accuracy value: 83.2 name: accuracy verified: true - task: type: multimodal dataset: name: PercepTest type: percepTest metrics: - type: accuracy value: 67.9 name: accuracy verified: true - task: type: multimodal dataset: name: VideoChatGPT type: videochatgpt metrics: - type: score value: 3.52 name: score verified: true - task: type: multimodal dataset: name: VideoDC type: videodc metrics: - type: score value: 3.66 name: score verified: true - task: type: multimodal dataset: name: LongVideoBench type: longvideobench metrics: - type: accuracy value: 58.2 name: accuracy verified: true - task: type: multimodal dataset: name: VideoMME type: videomme metrics: - type: accuracy value: 63.3 name: accuracy verified: true base_model: - lmms-lab/llava-onevision-qwen2-7b-si --- # LLaVA-Video-7B-Qwen2 ## Table of Contents 1. [Model Summary](##model-summary) 2. [Use](##use) 3. [Limitations](##limitations) 4. [Training](##training) 5. [License](##license) 6. [Citation](##citation) ## Model Summary The LLaVA-Video models are 7/72B parameter models trained on [LLaVA-Video-178K](https://huggingface.co/datasets/lmms-lab/LLaVA-Video-178K) and [LLaVA-OneVision Dataset](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data), based on Qwen2 language model with a context window of 32K tokens. This model support at most 64 frames. - **Project Page:** [Project Page](https://llava-vl.github.io/blog/2024-09-30-llava-video/). - **Paper**: For more details, please check our [paper](https://arxiv.org/abs/2410.02713) - **Repository:** [LLaVA-VL/LLaVA-NeXT](https://github.com/LLaVA-VL/LLaVA-NeXT?tab=readme-ov-file) - **Point of Contact:** [Yuanhan Zhang](https://zhangyuanhan-ai.github.io/) - **Languages:** English, Chinese ## Use ### Intended use The model was trained on [LLaVA-Video-178K](https://huggingface.co/datasets/lmms-lab/LLaVA-Video-178K) and [LLaVA-OneVision Dataset](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data), having the ability to interact with images, multi-image and videos, but specific to videos. **Feel free to share your generations in the Community tab!** ### Generation We provide the simple generation process for using our model. For more details, you could refer to [Github](https://github.com/LLaVA-VL/LLaVA-NeXT). ```python # pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git from llava.model.builder import load_pretrained_model from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX from llava.conversation import conv_templates, SeparatorStyle from PIL import Image import requests import copy import torch import sys import warnings from decord import VideoReader, cpu import numpy as np warnings.filterwarnings("ignore") def load_video(video_path, max_frames_num,fps=1,force_sample=False): if max_frames_num == 0: return np.zeros((1, 336, 336, 3)) vr = VideoReader(video_path, ctx=cpu(0),num_threads=1) total_frame_num = len(vr) video_time = total_frame_num / vr.get_avg_fps() fps = round(vr.get_avg_fps()/fps) frame_idx = [i for i in range(0, len(vr), fps)] frame_time = [i/fps for i in frame_idx] if len(frame_idx) > max_frames_num or force_sample: sample_fps = max_frames_num uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int) frame_idx = uniform_sampled_frames.tolist() frame_time = [i/vr.get_avg_fps() for i in frame_idx] frame_time = ",".join([f"{i:.2f}s" for i in frame_time]) spare_frames = vr.get_batch(frame_idx).asnumpy() # import pdb;pdb.set_trace() return spare_frames,frame_time,video_time pretrained = "lmms-lab/LLaVA-Video-7B-Qwen2" model_name = "llava_qwen" device = "cuda" device_map = "auto" tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, torch_dtype="bfloat16", device_map=device_map) # Add any other thing you want to pass in llava_model_args model.eval() video_path = "XXXX" max_frames_num = 64 video,frame_time,video_time = load_video(video_path, max_frames_num, 1, force_sample=True) video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda().half() video = [video] conv_template = "qwen_1_5" # Make sure you use correct chat template for different models time_instruciton = f"The video lasts for {video_time:.2f} seconds, and {len(video[0])} frames are uniformly sampled from it. These frames are located at {frame_time}.Please answer the following questions related to this video." question = DEFAULT_IMAGE_TOKEN + f"\n{time_instruciton}\nPlease describe this video in detail." conv = copy.deepcopy(conv_templates[conv_template]) conv.append_message(conv.roles[0], question) conv.append_message(conv.roles[1], None) prompt_question = conv.get_prompt() input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device) cont = model.generate( input_ids, images=video, modalities= ["video"], do_sample=False, temperature=0, max_new_tokens=4096, ) text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)[0].strip() print(text_outputs) ``` # Training ## Model - **Architecture:** SO400M + Qwen2 - **Initialized Model:** lmms-lab/llava-onevision-qwen2-7b-si - **Data:** A mixture of 1.6M single-image/multi-image/video data, 1 epoch, full model - **Precision:** bfloat16 ## Hardware & Software - **GPUs:** 256 * Nvidia Tesla A100 (for whole model series training) - **Orchestration:** [Huggingface Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) - **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch) # Citation ```bibtex @misc{zhang2024videoinstructiontuningsynthetic, title={Video Instruction Tuning With Synthetic Data}, author={Yuanhan Zhang and Jinming Wu and Wei Li and Bo Li and Zejun Ma and Ziwei Liu and Chunyuan Li}, year={2024}, eprint={2410.02713}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2410.02713}, } ```