Imperial-Diffusion / imperialdiffusionv1.yaml
ALEX V
Rename v1-finetune_everydream.yaml to imperialdiffusionv1.yaml
d28589d
raw
history blame
3.41 kB
model:
base_learning_rate: 1.0e-6
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: image
cond_stage_key: caption
image_size: 64
channels: 4
cond_stage_trainable: true
conditioning_key: crossattn
monitor: val/loss_simple_ema
scale_factor: 0.18215
use_ema: False
unfreeze_model: True
model_lr: 1.0e-6
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32 # unused
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 512
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
data:
target: main.DataModuleFromConfig
params:
batch_size: 4 # prefer highest possible without getting CUDA Out of Memory error, A100 40GB =~20 80GB= ~48
num_workers: 8
wrap: falsegit
train:
target: ldm.data.every_dream.EveryDreamBatch
params:
repeats: 5 # rough suggestions: 5 with 5000+ images, 15 for 1000 images, use micro yaml for <100
debug_level: 1 # 1 to print if images are dropped due to multiple-aspect ratio image batching
conditional_dropout: 0.04 # experimental, likelihood to drop the caption, may help with poorly captioned images
resolution: 512 # use 512 for 24GB, can use 576, 640, 704, 768, on higher VRAM cards only..
validation:
target: ldm.data.ed_validate.EDValidateBatch
params:
repeats: 0.5
test:
target: ldm.data.ed_validate.EDValidateBatch
params:
repeats: 0.2
lightning:
modelcheckpoint:
params:
every_n_epochs: 1 # produce a ckpt every epoch, leave 1!
#every_n_train_steps: 1400 # can only use epoch or train step checkpoints
save_top_k: 6 # save the best N ckpts according to loss, can reduce to save disk space but suggest at LEAST 2, more if you have max_epochs below higher!
save_last: True
filename: "{epoch:02d}-{step:05d}"
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 200
max_images: 16
increase_log_steps: False
trainer:
benchmark: True
max_epochs: 6 # better to run several epochs and test your checkpoints! Try 4-5, you get a checkpoint every epoch to test!
max_steps: 99000 # better to end on epochs not steps, especially with >500 images to ensure even distribution, but you can set this if you really want...
check_val_every_n_epoch: 1
gpus: 0,