ALEX V
commited on
Commit
·
cedbaf3
1
Parent(s):
cd379eb
Upload v1-finetune_everydream.yaml
Browse files- v1-finetune_everydream.yaml +108 -0
v1-finetune_everydream.yaml
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 1.0e-6
|
3 |
+
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
4 |
+
params:
|
5 |
+
linear_start: 0.00085
|
6 |
+
linear_end: 0.0120
|
7 |
+
num_timesteps_cond: 1
|
8 |
+
log_every_t: 200
|
9 |
+
timesteps: 1000
|
10 |
+
first_stage_key: image
|
11 |
+
cond_stage_key: caption
|
12 |
+
image_size: 64
|
13 |
+
channels: 4
|
14 |
+
cond_stage_trainable: true
|
15 |
+
conditioning_key: crossattn
|
16 |
+
monitor: val/loss_simple_ema
|
17 |
+
scale_factor: 0.18215
|
18 |
+
use_ema: False
|
19 |
+
unfreeze_model: True
|
20 |
+
model_lr: 1.0e-6
|
21 |
+
|
22 |
+
unet_config:
|
23 |
+
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
24 |
+
params:
|
25 |
+
image_size: 32 # unused
|
26 |
+
in_channels: 4
|
27 |
+
out_channels: 4
|
28 |
+
model_channels: 320
|
29 |
+
attention_resolutions: [ 4, 2, 1 ]
|
30 |
+
num_res_blocks: 2
|
31 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
32 |
+
num_heads: 8
|
33 |
+
use_spatial_transformer: True
|
34 |
+
transformer_depth: 1
|
35 |
+
context_dim: 768
|
36 |
+
use_checkpoint: True
|
37 |
+
legacy: False
|
38 |
+
|
39 |
+
first_stage_config:
|
40 |
+
target: ldm.models.autoencoder.AutoencoderKL
|
41 |
+
params:
|
42 |
+
embed_dim: 4
|
43 |
+
monitor: val/rec_loss
|
44 |
+
ddconfig:
|
45 |
+
double_z: true
|
46 |
+
z_channels: 4
|
47 |
+
resolution: 512
|
48 |
+
in_channels: 3
|
49 |
+
out_ch: 3
|
50 |
+
ch: 128
|
51 |
+
ch_mult:
|
52 |
+
- 1
|
53 |
+
- 2
|
54 |
+
- 4
|
55 |
+
- 4
|
56 |
+
num_res_blocks: 2
|
57 |
+
attn_resolutions: []
|
58 |
+
dropout: 0.0
|
59 |
+
lossconfig:
|
60 |
+
target: torch.nn.Identity
|
61 |
+
|
62 |
+
cond_stage_config:
|
63 |
+
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
64 |
+
|
65 |
+
data:
|
66 |
+
target: main.DataModuleFromConfig
|
67 |
+
params:
|
68 |
+
batch_size: 4 # prefer highest possible without getting CUDA Out of Memory error, A100 40GB =~20 80GB= ~48
|
69 |
+
num_workers: 8
|
70 |
+
wrap: falsegit
|
71 |
+
train:
|
72 |
+
target: ldm.data.every_dream.EveryDreamBatch
|
73 |
+
params:
|
74 |
+
repeats: 5 # rough suggestions: 5 with 5000+ images, 15 for 1000 images, use micro yaml for <100
|
75 |
+
debug_level: 1 # 1 to print if images are dropped due to multiple-aspect ratio image batching
|
76 |
+
conditional_dropout: 0.04 # experimental, likelihood to drop the caption, may help with poorly captioned images
|
77 |
+
resolution: 512 # use 512 for 24GB, can use 576, 640, 704, 768, on higher VRAM cards only..
|
78 |
+
validation:
|
79 |
+
target: ldm.data.ed_validate.EDValidateBatch
|
80 |
+
params:
|
81 |
+
repeats: 0.5
|
82 |
+
test:
|
83 |
+
target: ldm.data.ed_validate.EDValidateBatch
|
84 |
+
params:
|
85 |
+
repeats: 0.2
|
86 |
+
|
87 |
+
lightning:
|
88 |
+
modelcheckpoint:
|
89 |
+
params:
|
90 |
+
every_n_epochs: 1 # produce a ckpt every epoch, leave 1!
|
91 |
+
#every_n_train_steps: 1400 # can only use epoch or train step checkpoints
|
92 |
+
save_top_k: 6 # save the best N ckpts according to loss, can reduce to save disk space but suggest at LEAST 2, more if you have max_epochs below higher!
|
93 |
+
save_last: True
|
94 |
+
filename: "{epoch:02d}-{step:05d}"
|
95 |
+
callbacks:
|
96 |
+
image_logger:
|
97 |
+
target: main.ImageLogger
|
98 |
+
params:
|
99 |
+
batch_frequency: 200
|
100 |
+
max_images: 16
|
101 |
+
increase_log_steps: False
|
102 |
+
|
103 |
+
trainer:
|
104 |
+
benchmark: True
|
105 |
+
max_epochs: 6 # better to run several epochs and test your checkpoints! Try 4-5, you get a checkpoint every epoch to test!
|
106 |
+
max_steps: 99000 # better to end on epochs not steps, especially with >500 images to ensure even distribution, but you can set this if you really want...
|
107 |
+
check_val_every_n_epoch: 1
|
108 |
+
gpus: 0,
|