logasja commited on
Commit
c96aee2
·
verified ·
1 Parent(s): 91e19a2

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +87 -9
README.md CHANGED
@@ -1,17 +1,95 @@
1
-
2
  ---
3
  library_name: keras
4
  ---
 
 
 
5
 
6
- This model has been uploaded using the Keras library and can be used with JAX,
7
- TensorFlow, and PyTorch backends.
8
 
9
- This model card has been generated automatically and should be completed by the
10
- model author.
11
- See [Model Cards documentation](https://huggingface.co/docs/hub/model-cards) for
12
- more information.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
- For more details about the model architecture, check out
15
- [config.json](./config.json).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
 
17
  ![](./assets/summary_plot.png)
 
 
1
  ---
2
  library_name: keras
3
  ---
4
+ <Gallery />
5
+
6
+ Training logs [here](https://wandb.ai/spuds/auramask/runs/ceb4f30005db473b2950138e05ac6cc4)
7
 
8
+ # Model Description
9
+ This model uses a modified vnet for 2D input/output implemented [here](https://github.com/logasja/keras3-unets) with the following configuration.
10
 
11
+ ```json
12
+ {
13
+ "activation": "ReLU",
14
+ "batch_norm": false,
15
+ "filter_num": [
16
+ 128,
17
+ 256,
18
+ 512,
19
+ 1024,
20
+ 1024
21
+ ],
22
+ "n_labels": 3,
23
+ "output_activation": "tanh",
24
+ "pool": false,
25
+ "res_num_ini": 1,
26
+ "res_num_max": 3,
27
+ "unpool": false
28
+ }
29
+ ```
30
 
31
+ ```json
32
+ {
33
+ "alpha": 0.0001,
34
+ "batch": 32,
35
+ "epochs": 500,
36
+ "epsilon": 1,
37
+ "input": "(256, 256)",
38
+ "losses": {
39
+ "FEAT_ArcFace": {
40
+ "d": "cosine_similarity",
41
+ "f": "ArcFace",
42
+ "name": "FEAT_ArcFace",
43
+ "reduction": "sum_over_batch_size",
44
+ "threshold": 0.68,
45
+ "weight": 0.05
46
+ },
47
+ "FEAT_VGG-Face": {
48
+ "d": "cosine_similarity",
49
+ "f": "VGG-Face",
50
+ "name": "FEAT_VGG-Face",
51
+ "reduction": "sum_over_batch_size",
52
+ "threshold": 0.68,
53
+ "weight": 0.05
54
+ },
55
+ "IQASSIMC": {
56
+ "lower_better": false,
57
+ "name": "IQASSIMC",
58
+ "reduction": "sum_over_batch_size",
59
+ "weight": 0.5
60
+ },
61
+ "TopIQ": {
62
+ "full_ref": true,
63
+ "lower_better": false,
64
+ "name": "TopIQ",
65
+ "reduction": "sum_over_batch_size",
66
+ "score_range": "~0, ~1",
67
+ "weight": 0.5
68
+ }
69
+ },
70
+ "mixed_precision": true,
71
+ "optimizer": {
72
+ "amsgrad": false,
73
+ "beta_1": 0.9,
74
+ "beta_2": 0.999,
75
+ "clipnorm": null,
76
+ "clipvalue": null,
77
+ "ema_momentum": 0.99,
78
+ "ema_overwrite_frequency": null,
79
+ "epsilon": 1e-07,
80
+ "global_clipnorm": null,
81
+ "gradient_accumulation_steps": null,
82
+ "learning_rate": 9.999999747378752e-05,
83
+ "loss_scale_factor": null,
84
+ "name": "adamw",
85
+ "use_ema": false,
86
+ "weight_decay": 0.004
87
+ },
88
+ "seed": "BIIIIIGSTRETCH",
89
+ "testing": 0.01,
90
+ "training": 0.99
91
+ }
92
+ ```
93
 
94
+ ## Model Architecture Plot
95
  ![](./assets/summary_plot.png)