lombardata
commited on
Commit
•
199369e
1
Parent(s):
b4d6f8b
Upload README.md
Browse files
README.md
CHANGED
@@ -1,147 +1,206 @@
|
|
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
4 |
tags:
|
|
|
|
|
5 |
- generated_from_trainer
|
|
|
6 |
model-index:
|
7 |
- name: drone-DinoVdeau-large-2024_09_17-batch-size64_epochs100_freeze
|
8 |
results: []
|
9 |
---
|
10 |
|
11 |
-
|
12 |
-
should probably proofread and complete it, then remove this comment. -->
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
This model is a fine-tuned version of [facebook/dinov2-large](https://huggingface.co/facebook/dinov2-large) on the None dataset.
|
17 |
-
It achieves the following results on the evaluation set:
|
18 |
- Loss: 0.3578
|
19 |
-
-
|
20 |
-
-
|
21 |
-
- Mae: 0.1288
|
22 |
- R2: 0.4008
|
23 |
-
-
|
24 |
-
|
|
|
25 |
|
26 |
-
|
|
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
|
38 |
-
|
39 |
|
40 |
-
|
41 |
|
42 |
The following hyperparameters were used during training:
|
43 |
-
|
44 |
-
-
|
45 |
-
-
|
46 |
-
-
|
47 |
-
-
|
48 |
-
-
|
49 |
-
-
|
50 |
-
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
109 |
-
| 0.
|
110 |
-
| 0.
|
111 |
-
| 0.
|
112 |
-
| 0.
|
113 |
-
| 0.
|
114 |
-
| 0.
|
115 |
-
| 0.
|
116 |
-
| 0.
|
117 |
-
| 0.
|
118 |
-
| 0.
|
119 |
-
| 0.
|
120 |
-
| 0.
|
121 |
-
| 0.
|
122 |
-
| 0.
|
123 |
-
| 0.
|
124 |
-
| 0.
|
125 |
-
| 0.
|
126 |
-
| 0.
|
127 |
-
| 0.
|
128 |
-
| 0.
|
129 |
-
| 0.
|
130 |
-
| 0.
|
131 |
-
| 0.
|
132 |
-
| 0.
|
133 |
-
| 0.
|
134 |
-
| 0.
|
135 |
-
| 0.
|
136 |
-
| 0.
|
137 |
-
| 0.
|
138 |
-
| 0.
|
139 |
-
| 0.
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
---
|
3 |
+
language:
|
4 |
+
- eng
|
5 |
+
license: wtfpl
|
6 |
tags:
|
7 |
+
- multilabel-image-classification
|
8 |
+
- multilabel
|
9 |
- generated_from_trainer
|
10 |
+
base_model: facebook/dinov2-large
|
11 |
model-index:
|
12 |
- name: drone-DinoVdeau-large-2024_09_17-batch-size64_epochs100_freeze
|
13 |
results: []
|
14 |
---
|
15 |
|
16 |
+
DinoVd'eau is a fine-tuned version of [facebook/dinov2-large](https://huggingface.co/facebook/dinov2-large). It achieves the following results on the test set:
|
|
|
17 |
|
18 |
+
- Explained variance: 0.4014
|
|
|
|
|
|
|
19 |
- Loss: 0.3578
|
20 |
+
- MAE: 0.1288
|
21 |
+
- MSE: 0.0378
|
|
|
22 |
- R2: 0.4008
|
23 |
+
- RMSE: 0.1943
|
24 |
+
|
25 |
+
---
|
26 |
|
27 |
+
# Model description
|
28 |
+
DinoVd'eau is a model built on top of dinov2 model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers.
|
29 |
|
30 |
+
The source code for training the model can be found in this [Git repository](https://github.com/SeatizenDOI/DinoVdeau).
|
31 |
|
32 |
+
- **Developed by:** [lombardata](https://huggingface.co/lombardata), credits to [César Leblanc](https://huggingface.co/CesarLeblanc) and [Victor Illien](https://huggingface.co/groderg)
|
33 |
|
34 |
+
---
|
35 |
+
|
36 |
+
# Intended uses & limitations
|
37 |
+
You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species.
|
38 |
+
|
39 |
+
---
|
40 |
|
41 |
+
# Training and evaluation data
|
42 |
+
Details on the number of images for each class are given in the following table:
|
43 |
+
| Class | train | val | test | Total |
|
44 |
+
|:------------------------|--------:|------:|-------:|--------:|
|
45 |
+
| Acropore_branched | 1956 | 651 | 652 | 3259 |
|
46 |
+
| Acropore_digitised | 1717 | 576 | 576 | 2869 |
|
47 |
+
| Acropore_tabular | 1105 | 384 | 379 | 1868 |
|
48 |
+
| Algae | 11092 | 3677 | 3674 | 18443 |
|
49 |
+
| Dead_coral | 5888 | 1952 | 1959 | 9799 |
|
50 |
+
| Fish | 3453 | 1157 | 1157 | 5767 |
|
51 |
+
| Millepore | 1760 | 690 | 693 | 3143 |
|
52 |
+
| No_acropore_encrusting | 2707 | 974 | 999 | 4680 |
|
53 |
+
| No_acropore_massive | 6487 | 2158 | 2167 | 10812 |
|
54 |
+
| No_acropore_sub_massive | 5015 | 1776 | 1776 | 8567 |
|
55 |
+
| Rock | 11176 | 3725 | 3725 | 18626 |
|
56 |
+
| Rubble | 10689 | 3563 | 3563 | 17815 |
|
57 |
+
| Sand | 11168 | 3723 | 3723 | 18614 |
|
58 |
|
59 |
+
---
|
60 |
|
61 |
+
# Training procedure
|
62 |
|
63 |
+
## Training hyperparameters
|
64 |
|
65 |
The following hyperparameters were used during training:
|
66 |
+
|
67 |
+
- **Number of Epochs**: 100
|
68 |
+
- **Learning Rate**: 0.001
|
69 |
+
- **Train Batch Size**: 64
|
70 |
+
- **Eval Batch Size**: 64
|
71 |
+
- **Optimizer**: Adam
|
72 |
+
- **LR Scheduler Type**: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1
|
73 |
+
- **Freeze Encoder**: Yes
|
74 |
+
- **Data Augmentation**: Yes
|
75 |
+
|
76 |
+
|
77 |
+
## Data Augmentation
|
78 |
+
Data were augmented using the following transformations :
|
79 |
+
|
80 |
+
Train Transforms
|
81 |
+
- **PreProcess**: No additional parameters
|
82 |
+
- **Resize**: probability=1.00
|
83 |
+
- **RandomHorizontalFlip**: probability=0.25
|
84 |
+
- **RandomVerticalFlip**: probability=0.25
|
85 |
+
- **ColorJiggle**: probability=0.25
|
86 |
+
- **RandomPerspective**: probability=0.25
|
87 |
+
- **Normalize**: probability=1.00
|
88 |
+
|
89 |
+
Val Transforms
|
90 |
+
- **PreProcess**: No additional parameters
|
91 |
+
- **Resize**: probability=1.00
|
92 |
+
- **Normalize**: probability=1.00
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
## Training results
|
97 |
+
Epoch | Explained Variance | Validation Loss | MAE | MSE | R2 | RMSE | Learning Rate
|
98 |
+
--- | --- | --- | --- | --- | --- | --- | ---
|
99 |
+
1 | 0.28 | 0.386 | 0.157 | 0.046 | 0.262 | 0.215 | 0.001
|
100 |
+
2 | 0.321 | 0.376 | 0.147 | 0.044 | 0.312 | 0.21 | 0.001
|
101 |
+
3 | 0.339 | 0.372 | 0.145 | 0.043 | 0.332 | 0.206 | 0.001
|
102 |
+
4 | 0.357 | 0.367 | 0.14 | 0.041 | 0.355 | 0.202 | 0.001
|
103 |
+
5 | 0.349 | 0.369 | 0.139 | 0.042 | 0.343 | 0.205 | 0.001
|
104 |
+
6 | 0.359 | 0.367 | 0.141 | 0.041 | 0.355 | 0.202 | 0.001
|
105 |
+
7 | 0.35 | 0.368 | 0.141 | 0.042 | 0.346 | 0.204 | 0.001
|
106 |
+
8 | 0.364 | 0.366 | 0.139 | 0.041 | 0.36 | 0.201 | 0.001
|
107 |
+
9 | 0.361 | 0.366 | 0.134 | 0.041 | 0.355 | 0.202 | 0.001
|
108 |
+
10 | 0.356 | 0.367 | 0.138 | 0.041 | 0.353 | 0.202 | 0.001
|
109 |
+
11 | 0.357 | 0.367 | 0.137 | 0.041 | 0.355 | 0.202 | 0.001
|
110 |
+
12 | 0.36 | 0.366 | 0.14 | 0.041 | 0.359 | 0.202 | 0.001
|
111 |
+
13 | 0.37 | 0.363 | 0.136 | 0.04 | 0.37 | 0.199 | 0.001
|
112 |
+
14 | 0.363 | 0.367 | 0.142 | 0.041 | 0.356 | 0.202 | 0.001
|
113 |
+
15 | 0.364 | 0.364 | 0.14 | 0.04 | 0.362 | 0.201 | 0.001
|
114 |
+
16 | 0.372 | 0.364 | 0.136 | 0.04 | 0.369 | 0.2 | 0.001
|
115 |
+
17 | 0.373 | 0.367 | 0.141 | 0.041 | 0.362 | 0.202 | 0.001
|
116 |
+
18 | 0.371 | 0.363 | 0.137 | 0.04 | 0.37 | 0.2 | 0.001
|
117 |
+
19 | 0.373 | 0.363 | 0.135 | 0.04 | 0.372 | 0.199 | 0.001
|
118 |
+
20 | 0.362 | 0.365 | 0.135 | 0.041 | 0.359 | 0.201 | 0.001
|
119 |
+
21 | 0.363 | 0.367 | 0.136 | 0.041 | 0.358 | 0.202 | 0.001
|
120 |
+
22 | 0.37 | 0.365 | 0.137 | 0.04 | 0.368 | 0.2 | 0.001
|
121 |
+
23 | 0.374 | 0.363 | 0.136 | 0.04 | 0.37 | 0.2 | 0.001
|
122 |
+
24 | 0.376 | 0.363 | 0.139 | 0.04 | 0.373 | 0.199 | 0.001
|
123 |
+
25 | 0.373 | 0.364 | 0.138 | 0.04 | 0.37 | 0.2 | 0.001
|
124 |
+
26 | 0.384 | 0.361 | 0.133 | 0.039 | 0.382 | 0.198 | 0.0001
|
125 |
+
27 | 0.388 | 0.36 | 0.135 | 0.039 | 0.386 | 0.197 | 0.0001
|
126 |
+
28 | 0.39 | 0.359 | 0.134 | 0.038 | 0.389 | 0.196 | 0.0001
|
127 |
+
29 | 0.391 | 0.36 | 0.135 | 0.038 | 0.389 | 0.196 | 0.0001
|
128 |
+
30 | 0.389 | 0.36 | 0.135 | 0.039 | 0.388 | 0.197 | 0.0001
|
129 |
+
31 | 0.392 | 0.359 | 0.132 | 0.038 | 0.391 | 0.196 | 0.0001
|
130 |
+
32 | 0.393 | 0.358 | 0.133 | 0.038 | 0.393 | 0.196 | 0.0001
|
131 |
+
33 | 0.395 | 0.358 | 0.131 | 0.038 | 0.395 | 0.195 | 0.0001
|
132 |
+
34 | 0.397 | 0.358 | 0.132 | 0.038 | 0.395 | 0.195 | 0.0001
|
133 |
+
35 | 0.395 | 0.358 | 0.132 | 0.038 | 0.395 | 0.195 | 0.0001
|
134 |
+
36 | 0.39 | 0.359 | 0.135 | 0.039 | 0.39 | 0.196 | 0.0001
|
135 |
+
37 | 0.397 | 0.358 | 0.131 | 0.038 | 0.397 | 0.195 | 0.0001
|
136 |
+
38 | 0.394 | 0.358 | 0.133 | 0.038 | 0.392 | 0.196 | 0.0001
|
137 |
+
39 | 0.397 | 0.358 | 0.131 | 0.038 | 0.396 | 0.195 | 0.0001
|
138 |
+
40 | 0.4 | 0.357 | 0.133 | 0.038 | 0.398 | 0.195 | 0.0001
|
139 |
+
41 | 0.399 | 0.358 | 0.132 | 0.038 | 0.396 | 0.195 | 0.0001
|
140 |
+
42 | 0.399 | 0.357 | 0.133 | 0.038 | 0.397 | 0.195 | 0.0001
|
141 |
+
43 | 0.402 | 0.357 | 0.133 | 0.038 | 0.401 | 0.194 | 0.0001
|
142 |
+
44 | 0.403 | 0.357 | 0.131 | 0.038 | 0.401 | 0.194 | 0.0001
|
143 |
+
45 | 0.403 | 0.357 | 0.132 | 0.038 | 0.402 | 0.194 | 0.0001
|
144 |
+
46 | 0.401 | 0.357 | 0.13 | 0.038 | 0.4 | 0.194 | 0.0001
|
145 |
+
47 | 0.4 | 0.357 | 0.129 | 0.038 | 0.397 | 0.195 | 0.0001
|
146 |
+
48 | 0.404 | 0.356 | 0.13 | 0.038 | 0.402 | 0.194 | 0.0001
|
147 |
+
49 | 0.402 | 0.357 | 0.131 | 0.038 | 0.401 | 0.194 | 0.0001
|
148 |
+
50 | 0.401 | 0.357 | 0.132 | 0.038 | 0.4 | 0.194 | 0.0001
|
149 |
+
51 | 0.402 | 0.358 | 0.134 | 0.038 | 0.396 | 0.195 | 0.0001
|
150 |
+
52 | 0.405 | 0.356 | 0.131 | 0.037 | 0.404 | 0.194 | 0.0001
|
151 |
+
53 | 0.405 | 0.357 | 0.131 | 0.038 | 0.403 | 0.194 | 0.0001
|
152 |
+
54 | 0.402 | 0.357 | 0.132 | 0.038 | 0.401 | 0.194 | 0.0001
|
153 |
+
55 | 0.405 | 0.356 | 0.129 | 0.038 | 0.403 | 0.194 | 0.0001
|
154 |
+
56 | 0.405 | 0.357 | 0.128 | 0.038 | 0.402 | 0.194 | 0.0001
|
155 |
+
57 | 0.405 | 0.356 | 0.129 | 0.038 | 0.403 | 0.194 | 0.0001
|
156 |
+
58 | 0.406 | 0.356 | 0.13 | 0.038 | 0.404 | 0.194 | 0.0001
|
157 |
+
59 | 0.406 | 0.356 | 0.129 | 0.037 | 0.405 | 0.194 | 1e-05
|
158 |
+
60 | 0.408 | 0.356 | 0.13 | 0.037 | 0.406 | 0.193 | 1e-05
|
159 |
+
61 | 0.407 | 0.355 | 0.13 | 0.037 | 0.407 | 0.193 | 1e-05
|
160 |
+
62 | 0.406 | 0.356 | 0.132 | 0.038 | 0.404 | 0.194 | 1e-05
|
161 |
+
63 | 0.409 | 0.356 | 0.129 | 0.037 | 0.408 | 0.193 | 1e-05
|
162 |
+
64 | 0.409 | 0.355 | 0.13 | 0.037 | 0.408 | 0.193 | 1e-05
|
163 |
+
65 | 0.406 | 0.356 | 0.131 | 0.038 | 0.405 | 0.194 | 1e-05
|
164 |
+
66 | 0.409 | 0.355 | 0.13 | 0.037 | 0.408 | 0.193 | 1e-05
|
165 |
+
67 | 0.408 | 0.355 | 0.13 | 0.037 | 0.408 | 0.193 | 1e-05
|
166 |
+
68 | 0.407 | 0.356 | 0.13 | 0.037 | 0.406 | 0.193 | 1e-05
|
167 |
+
69 | 0.409 | 0.355 | 0.13 | 0.037 | 0.408 | 0.193 | 1e-05
|
168 |
+
70 | 0.409 | 0.356 | 0.131 | 0.037 | 0.407 | 0.193 | 1e-05
|
169 |
+
71 | 0.407 | 0.356 | 0.13 | 0.037 | 0.407 | 0.193 | 1e-05
|
170 |
+
72 | 0.408 | 0.356 | 0.13 | 0.037 | 0.407 | 0.193 | 1e-05
|
171 |
+
73 | 0.409 | 0.355 | 0.13 | 0.037 | 0.408 | 0.193 | 1.0000000000000002e-06
|
172 |
+
74 | 0.409 | 0.355 | 0.128 | 0.037 | 0.409 | 0.193 | 1.0000000000000002e-06
|
173 |
+
75 | 0.406 | 0.356 | 0.13 | 0.037 | 0.405 | 0.194 | 1.0000000000000002e-06
|
174 |
+
76 | 0.408 | 0.356 | 0.128 | 0.037 | 0.406 | 0.193 | 1.0000000000000002e-06
|
175 |
+
77 | 0.405 | 0.356 | 0.132 | 0.038 | 0.404 | 0.194 | 1.0000000000000002e-06
|
176 |
+
78 | 0.409 | 0.355 | 0.131 | 0.037 | 0.409 | 0.193 | 1.0000000000000002e-06
|
177 |
+
79 | 0.402 | 0.357 | 0.131 | 0.038 | 0.4 | 0.195 | 1.0000000000000002e-06
|
178 |
+
80 | 0.406 | 0.356 | 0.131 | 0.037 | 0.405 | 0.194 | 1.0000000000000002e-06
|
179 |
+
81 | 0.409 | 0.356 | 0.131 | 0.037 | 0.408 | 0.193 | 1.0000000000000002e-07
|
180 |
+
82 | 0.409 | 0.356 | 0.131 | 0.037 | 0.407 | 0.193 | 1.0000000000000002e-07
|
181 |
+
83 | 0.41 | 0.356 | 0.13 | 0.037 | 0.407 | 0.193 | 1.0000000000000002e-07
|
182 |
+
84 | 0.408 | 0.356 | 0.131 | 0.037 | 0.406 | 0.193 | 1.0000000000000002e-07
|
183 |
+
|
184 |
+
|
185 |
+
---
|
186 |
+
|
187 |
+
# CO2 Emissions
|
188 |
+
|
189 |
+
The estimated CO2 emissions for training this model are documented below:
|
190 |
+
|
191 |
+
- **Emissions**: 0.22861184690098074 grams of CO2
|
192 |
+
- **Source**: Code Carbon
|
193 |
+
- **Training Type**: fine-tuning
|
194 |
+
- **Geographical Location**: Brest, France
|
195 |
+
- **Hardware Used**: NVIDIA Tesla V100 PCIe 32 Go
|
196 |
+
|
197 |
+
|
198 |
+
---
|
199 |
+
|
200 |
+
# Framework Versions
|
201 |
+
|
202 |
+
- **Transformers**: 4.41.1
|
203 |
+
- **Pytorch**: 2.3.0+cu121
|
204 |
+
- **Datasets**: 2.19.1
|
205 |
+
- **Tokenizers**: 0.19.1
|
206 |
+
|