lombardata commited on
Commit
199369e
1 Parent(s): b4d6f8b

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +185 -126
README.md CHANGED
@@ -1,147 +1,206 @@
 
1
  ---
2
- license: apache-2.0
3
- base_model: facebook/dinov2-large
 
4
  tags:
 
 
5
  - generated_from_trainer
 
6
  model-index:
7
  - name: drone-DinoVdeau-large-2024_09_17-batch-size64_epochs100_freeze
8
  results: []
9
  ---
10
 
11
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
- should probably proofread and complete it, then remove this comment. -->
13
 
14
- # drone-DinoVdeau-large-2024_09_17-batch-size64_epochs100_freeze
15
-
16
- This model is a fine-tuned version of [facebook/dinov2-large](https://huggingface.co/facebook/dinov2-large) on the None dataset.
17
- It achieves the following results on the evaluation set:
18
  - Loss: 0.3578
19
- - Mse: 0.0378
20
- - Rmse: 0.1943
21
- - Mae: 0.1288
22
  - R2: 0.4008
23
- - Explained Variance: 0.4014
24
- - Learning Rate: 0.0000
 
25
 
26
- ## Model description
 
27
 
28
- More information needed
29
 
30
- ## Intended uses & limitations
31
 
32
- More information needed
 
 
 
 
 
33
 
34
- ## Training and evaluation data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
- More information needed
37
 
38
- ## Training procedure
39
 
40
- ### Training hyperparameters
41
 
42
  The following hyperparameters were used during training:
43
- - learning_rate: 0.001
44
- - train_batch_size: 64
45
- - eval_batch_size: 64
46
- - seed: 42
47
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
- - lr_scheduler_type: linear
49
- - num_epochs: 100
50
- - mixed_precision_training: Native AMP
51
-
52
- ### Training results
53
-
54
- | Training Loss | Epoch | Step | Validation Loss | Mse | Rmse | Mae | R2 | Explained Variance | Rate |
55
- |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:------------------:|:------:|
56
- | No log | 1.0 | 181 | 0.3858 | 0.0464 | 0.2153 | 0.1571 | 0.2624 | 0.2805 | 0.001 |
57
- | No log | 2.0 | 362 | 0.3764 | 0.0440 | 0.2097 | 0.1467 | 0.3121 | 0.3209 | 0.001 |
58
- | 0.4473 | 3.0 | 543 | 0.3716 | 0.0425 | 0.2062 | 0.1450 | 0.3319 | 0.3394 | 0.001 |
59
- | 0.4473 | 4.0 | 724 | 0.3673 | 0.0410 | 0.2024 | 0.1395 | 0.3548 | 0.3566 | 0.001 |
60
- | 0.4473 | 5.0 | 905 | 0.3692 | 0.0419 | 0.2046 | 0.1393 | 0.3425 | 0.3494 | 0.001 |
61
- | 0.3892 | 6.0 | 1086 | 0.3673 | 0.0409 | 0.2022 | 0.1412 | 0.3554 | 0.3590 | 0.001 |
62
- | 0.3892 | 7.0 | 1267 | 0.3681 | 0.0415 | 0.2038 | 0.1408 | 0.3457 | 0.3499 | 0.001 |
63
- | 0.3892 | 8.0 | 1448 | 0.3656 | 0.0406 | 0.2015 | 0.1389 | 0.3596 | 0.3642 | 0.001 |
64
- | 0.3855 | 9.0 | 1629 | 0.3659 | 0.0408 | 0.2019 | 0.1344 | 0.3555 | 0.3613 | 0.001 |
65
- | 0.3855 | 10.0 | 1810 | 0.3666 | 0.0409 | 0.2023 | 0.1384 | 0.3533 | 0.3562 | 0.001 |
66
- | 0.3855 | 11.0 | 1991 | 0.3666 | 0.0409 | 0.2022 | 0.1366 | 0.3550 | 0.3574 | 0.001 |
67
- | 0.3816 | 12.0 | 2172 | 0.3663 | 0.0409 | 0.2021 | 0.1396 | 0.3587 | 0.3598 | 0.001 |
68
- | 0.3816 | 13.0 | 2353 | 0.3632 | 0.0398 | 0.1995 | 0.1361 | 0.3697 | 0.3705 | 0.001 |
69
- | 0.381 | 14.0 | 2534 | 0.3669 | 0.0410 | 0.2024 | 0.1423 | 0.3562 | 0.3628 | 0.001 |
70
- | 0.381 | 15.0 | 2715 | 0.3645 | 0.0404 | 0.2009 | 0.1395 | 0.3620 | 0.3645 | 0.001 |
71
- | 0.381 | 16.0 | 2896 | 0.3639 | 0.0400 | 0.2000 | 0.1357 | 0.3695 | 0.3715 | 0.001 |
72
- | 0.3811 | 17.0 | 3077 | 0.3667 | 0.0406 | 0.2016 | 0.1413 | 0.3622 | 0.3728 | 0.001 |
73
- | 0.3811 | 18.0 | 3258 | 0.3632 | 0.0398 | 0.1995 | 0.1368 | 0.3695 | 0.3705 | 0.001 |
74
- | 0.3811 | 19.0 | 3439 | 0.3630 | 0.0397 | 0.1994 | 0.1354 | 0.3719 | 0.3734 | 0.001 |
75
- | 0.3792 | 20.0 | 3620 | 0.3649 | 0.0405 | 0.2013 | 0.1349 | 0.3587 | 0.3622 | 0.001 |
76
- | 0.3792 | 21.0 | 3801 | 0.3665 | 0.0407 | 0.2017 | 0.1361 | 0.3585 | 0.3631 | 0.001 |
77
- | 0.3792 | 22.0 | 3982 | 0.3648 | 0.0400 | 0.2000 | 0.1369 | 0.3678 | 0.3705 | 0.001 |
78
- | 0.3808 | 23.0 | 4163 | 0.3633 | 0.0398 | 0.1996 | 0.1356 | 0.3705 | 0.3736 | 0.001 |
79
- | 0.3808 | 24.0 | 4344 | 0.3632 | 0.0397 | 0.1991 | 0.1393 | 0.3725 | 0.3761 | 0.001 |
80
- | 0.3796 | 25.0 | 4525 | 0.3638 | 0.0399 | 0.1997 | 0.1381 | 0.3698 | 0.3734 | 0.001 |
81
- | 0.3796 | 26.0 | 4706 | 0.3607 | 0.0390 | 0.1975 | 0.1329 | 0.3818 | 0.3836 | 0.0001 |
82
- | 0.3796 | 27.0 | 4887 | 0.3600 | 0.0387 | 0.1967 | 0.1353 | 0.3863 | 0.3878 | 0.0001 |
83
- | 0.3765 | 28.0 | 5068 | 0.3592 | 0.0384 | 0.1961 | 0.1337 | 0.3894 | 0.3904 | 0.0001 |
84
- | 0.3765 | 29.0 | 5249 | 0.3595 | 0.0385 | 0.1961 | 0.1350 | 0.3892 | 0.3915 | 0.0001 |
85
- | 0.3765 | 30.0 | 5430 | 0.3598 | 0.0386 | 0.1965 | 0.1350 | 0.3876 | 0.3893 | 0.0001 |
86
- | 0.373 | 31.0 | 5611 | 0.3587 | 0.0384 | 0.1959 | 0.1317 | 0.3907 | 0.3921 | 0.0001 |
87
- | 0.373 | 32.0 | 5792 | 0.3584 | 0.0383 | 0.1956 | 0.1326 | 0.3928 | 0.3932 | 0.0001 |
88
- | 0.373 | 33.0 | 5973 | 0.3581 | 0.0381 | 0.1953 | 0.1311 | 0.3945 | 0.3953 | 0.0001 |
89
- | 0.3735 | 34.0 | 6154 | 0.3580 | 0.0381 | 0.1951 | 0.1323 | 0.3953 | 0.3967 | 0.0001 |
90
- | 0.3735 | 35.0 | 6335 | 0.3579 | 0.0381 | 0.1951 | 0.1322 | 0.3949 | 0.3954 | 0.0001 |
91
- | 0.3711 | 36.0 | 6516 | 0.3592 | 0.0385 | 0.1963 | 0.1345 | 0.3895 | 0.3899 | 0.0001 |
92
- | 0.3711 | 37.0 | 6697 | 0.3575 | 0.0380 | 0.1949 | 0.1313 | 0.3966 | 0.3970 | 0.0001 |
93
- | 0.3711 | 38.0 | 6878 | 0.3582 | 0.0383 | 0.1956 | 0.1326 | 0.3923 | 0.3936 | 0.0001 |
94
- | 0.3705 | 39.0 | 7059 | 0.3576 | 0.0380 | 0.1948 | 0.1313 | 0.3963 | 0.3965 | 0.0001 |
95
- | 0.3705 | 40.0 | 7240 | 0.3575 | 0.0379 | 0.1947 | 0.1333 | 0.3980 | 0.4000 | 0.0001 |
96
- | 0.3705 | 41.0 | 7421 | 0.3580 | 0.0381 | 0.1952 | 0.1317 | 0.3956 | 0.3988 | 0.0001 |
97
- | 0.3704 | 42.0 | 7602 | 0.3575 | 0.0380 | 0.1949 | 0.1330 | 0.3970 | 0.3986 | 0.0001 |
98
- | 0.3704 | 43.0 | 7783 | 0.3569 | 0.0377 | 0.1942 | 0.1325 | 0.4008 | 0.4020 | 0.0001 |
99
- | 0.3704 | 44.0 | 7964 | 0.3568 | 0.0377 | 0.1942 | 0.1305 | 0.4009 | 0.4026 | 0.0001 |
100
- | 0.3695 | 45.0 | 8145 | 0.3567 | 0.0376 | 0.1940 | 0.1319 | 0.4021 | 0.4033 | 0.0001 |
101
- | 0.3695 | 46.0 | 8326 | 0.3569 | 0.0377 | 0.1943 | 0.1298 | 0.3998 | 0.4015 | 0.0001 |
102
- | 0.369 | 47.0 | 8507 | 0.3574 | 0.0380 | 0.1948 | 0.1292 | 0.3973 | 0.3996 | 0.0001 |
103
- | 0.369 | 48.0 | 8688 | 0.3563 | 0.0376 | 0.1940 | 0.1302 | 0.4019 | 0.4041 | 0.0001 |
104
- | 0.369 | 49.0 | 8869 | 0.3566 | 0.0377 | 0.1940 | 0.1306 | 0.4011 | 0.4024 | 0.0001 |
105
- | 0.3691 | 50.0 | 9050 | 0.3571 | 0.0378 | 0.1944 | 0.1322 | 0.3998 | 0.4015 | 0.0001 |
106
- | 0.3691 | 51.0 | 9231 | 0.3584 | 0.0381 | 0.1952 | 0.1335 | 0.3958 | 0.4021 | 0.0001 |
107
- | 0.3691 | 52.0 | 9412 | 0.3561 | 0.0375 | 0.1936 | 0.1309 | 0.4042 | 0.4045 | 0.0001 |
108
- | 0.3677 | 53.0 | 9593 | 0.3565 | 0.0376 | 0.1939 | 0.1315 | 0.4026 | 0.4053 | 0.0001 |
109
- | 0.3677 | 54.0 | 9774 | 0.3567 | 0.0377 | 0.1943 | 0.1316 | 0.4011 | 0.4018 | 0.0001 |
110
- | 0.3677 | 55.0 | 9955 | 0.3565 | 0.0376 | 0.1939 | 0.1292 | 0.4026 | 0.4052 | 0.0001 |
111
- | 0.3684 | 56.0 | 10136 | 0.3567 | 0.0377 | 0.1941 | 0.1279 | 0.4017 | 0.4046 | 0.0001 |
112
- | 0.3684 | 57.0 | 10317 | 0.3562 | 0.0376 | 0.1938 | 0.1294 | 0.4032 | 0.4049 | 0.0001 |
113
- | 0.3684 | 58.0 | 10498 | 0.3565 | 0.0376 | 0.1938 | 0.1299 | 0.4036 | 0.4062 | 0.0001 |
114
- | 0.368 | 59.0 | 10679 | 0.3559 | 0.0375 | 0.1936 | 0.1292 | 0.4047 | 0.4061 | 1e-05 |
115
- | 0.368 | 60.0 | 10860 | 0.3559 | 0.0374 | 0.1934 | 0.1295 | 0.4060 | 0.4082 | 1e-05 |
116
- | 0.3664 | 61.0 | 11041 | 0.3555 | 0.0373 | 0.1932 | 0.1304 | 0.4072 | 0.4075 | 1e-05 |
117
- | 0.3664 | 62.0 | 11222 | 0.3565 | 0.0376 | 0.1939 | 0.1317 | 0.4036 | 0.4058 | 1e-05 |
118
- | 0.3664 | 63.0 | 11403 | 0.3556 | 0.0373 | 0.1930 | 0.1293 | 0.4075 | 0.4087 | 1e-05 |
119
- | 0.366 | 64.0 | 11584 | 0.3554 | 0.0373 | 0.1931 | 0.1296 | 0.4077 | 0.4089 | 1e-05 |
120
- | 0.366 | 65.0 | 11765 | 0.3560 | 0.0375 | 0.1938 | 0.1307 | 0.4049 | 0.4059 | 1e-05 |
121
- | 0.366 | 66.0 | 11946 | 0.3553 | 0.0372 | 0.1930 | 0.1300 | 0.4080 | 0.4085 | 1e-05 |
122
- | 0.3654 | 67.0 | 12127 | 0.3554 | 0.0373 | 0.1930 | 0.1299 | 0.4078 | 0.4082 | 1e-05 |
123
- | 0.3654 | 68.0 | 12308 | 0.3556 | 0.0374 | 0.1934 | 0.1302 | 0.4059 | 0.4074 | 1e-05 |
124
- | 0.3654 | 69.0 | 12489 | 0.3554 | 0.0373 | 0.1930 | 0.1298 | 0.4083 | 0.4086 | 1e-05 |
125
- | 0.3658 | 70.0 | 12670 | 0.3559 | 0.0374 | 0.1933 | 0.1307 | 0.4066 | 0.4094 | 1e-05 |
126
- | 0.3658 | 71.0 | 12851 | 0.3557 | 0.0374 | 0.1933 | 0.1296 | 0.4070 | 0.4073 | 1e-05 |
127
- | 0.366 | 72.0 | 13032 | 0.3557 | 0.0373 | 0.1932 | 0.1303 | 0.4070 | 0.4084 | 1e-05 |
128
- | 0.366 | 73.0 | 13213 | 0.3552 | 0.0372 | 0.1929 | 0.1299 | 0.4082 | 0.4090 | 0.0000 |
129
- | 0.366 | 74.0 | 13394 | 0.3552 | 0.0372 | 0.1929 | 0.1281 | 0.4087 | 0.4094 | 0.0000 |
130
- | 0.3654 | 75.0 | 13575 | 0.3558 | 0.0375 | 0.1936 | 0.1303 | 0.4047 | 0.4057 | 0.0000 |
131
- | 0.3654 | 76.0 | 13756 | 0.3555 | 0.0374 | 0.1933 | 0.1277 | 0.4061 | 0.4084 | 0.0000 |
132
- | 0.3654 | 77.0 | 13937 | 0.3562 | 0.0376 | 0.1938 | 0.1321 | 0.4042 | 0.4046 | 0.0000 |
133
- | 0.3663 | 78.0 | 14118 | 0.3553 | 0.0372 | 0.1929 | 0.1306 | 0.4087 | 0.4090 | 0.0000 |
134
- | 0.3663 | 79.0 | 14299 | 0.3569 | 0.0379 | 0.1947 | 0.1310 | 0.3999 | 0.4020 | 0.0000 |
135
- | 0.3663 | 80.0 | 14480 | 0.3563 | 0.0375 | 0.1936 | 0.1311 | 0.4052 | 0.4058 | 0.0000 |
136
- | 0.3655 | 81.0 | 14661 | 0.3555 | 0.0373 | 0.1930 | 0.1308 | 0.4079 | 0.4092 | 0.0000 |
137
- | 0.3655 | 82.0 | 14842 | 0.3556 | 0.0373 | 0.1932 | 0.1309 | 0.4072 | 0.4087 | 0.0000 |
138
- | 0.3651 | 83.0 | 15023 | 0.3557 | 0.0373 | 0.1932 | 0.1304 | 0.4074 | 0.4102 | 0.0000 |
139
- | 0.3651 | 84.0 | 15204 | 0.3558 | 0.0374 | 0.1934 | 0.1306 | 0.4063 | 0.4082 | 0.0000 |
140
-
141
-
142
- ### Framework versions
143
-
144
- - Transformers 4.41.1
145
- - Pytorch 2.3.0+cu121
146
- - Datasets 2.19.1
147
- - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
  ---
3
+ language:
4
+ - eng
5
+ license: wtfpl
6
  tags:
7
+ - multilabel-image-classification
8
+ - multilabel
9
  - generated_from_trainer
10
+ base_model: facebook/dinov2-large
11
  model-index:
12
  - name: drone-DinoVdeau-large-2024_09_17-batch-size64_epochs100_freeze
13
  results: []
14
  ---
15
 
16
+ DinoVd'eau is a fine-tuned version of [facebook/dinov2-large](https://huggingface.co/facebook/dinov2-large). It achieves the following results on the test set:
 
17
 
18
+ - Explained variance: 0.4014
 
 
 
19
  - Loss: 0.3578
20
+ - MAE: 0.1288
21
+ - MSE: 0.0378
 
22
  - R2: 0.4008
23
+ - RMSE: 0.1943
24
+
25
+ ---
26
 
27
+ # Model description
28
+ DinoVd'eau is a model built on top of dinov2 model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers.
29
 
30
+ The source code for training the model can be found in this [Git repository](https://github.com/SeatizenDOI/DinoVdeau).
31
 
32
+ - **Developed by:** [lombardata](https://huggingface.co/lombardata), credits to [César Leblanc](https://huggingface.co/CesarLeblanc) and [Victor Illien](https://huggingface.co/groderg)
33
 
34
+ ---
35
+
36
+ # Intended uses & limitations
37
+ You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species.
38
+
39
+ ---
40
 
41
+ # Training and evaluation data
42
+ Details on the number of images for each class are given in the following table:
43
+ | Class | train | val | test | Total |
44
+ |:------------------------|--------:|------:|-------:|--------:|
45
+ | Acropore_branched | 1956 | 651 | 652 | 3259 |
46
+ | Acropore_digitised | 1717 | 576 | 576 | 2869 |
47
+ | Acropore_tabular | 1105 | 384 | 379 | 1868 |
48
+ | Algae | 11092 | 3677 | 3674 | 18443 |
49
+ | Dead_coral | 5888 | 1952 | 1959 | 9799 |
50
+ | Fish | 3453 | 1157 | 1157 | 5767 |
51
+ | Millepore | 1760 | 690 | 693 | 3143 |
52
+ | No_acropore_encrusting | 2707 | 974 | 999 | 4680 |
53
+ | No_acropore_massive | 6487 | 2158 | 2167 | 10812 |
54
+ | No_acropore_sub_massive | 5015 | 1776 | 1776 | 8567 |
55
+ | Rock | 11176 | 3725 | 3725 | 18626 |
56
+ | Rubble | 10689 | 3563 | 3563 | 17815 |
57
+ | Sand | 11168 | 3723 | 3723 | 18614 |
58
 
59
+ ---
60
 
61
+ # Training procedure
62
 
63
+ ## Training hyperparameters
64
 
65
  The following hyperparameters were used during training:
66
+
67
+ - **Number of Epochs**: 100
68
+ - **Learning Rate**: 0.001
69
+ - **Train Batch Size**: 64
70
+ - **Eval Batch Size**: 64
71
+ - **Optimizer**: Adam
72
+ - **LR Scheduler Type**: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1
73
+ - **Freeze Encoder**: Yes
74
+ - **Data Augmentation**: Yes
75
+
76
+
77
+ ## Data Augmentation
78
+ Data were augmented using the following transformations :
79
+
80
+ Train Transforms
81
+ - **PreProcess**: No additional parameters
82
+ - **Resize**: probability=1.00
83
+ - **RandomHorizontalFlip**: probability=0.25
84
+ - **RandomVerticalFlip**: probability=0.25
85
+ - **ColorJiggle**: probability=0.25
86
+ - **RandomPerspective**: probability=0.25
87
+ - **Normalize**: probability=1.00
88
+
89
+ Val Transforms
90
+ - **PreProcess**: No additional parameters
91
+ - **Resize**: probability=1.00
92
+ - **Normalize**: probability=1.00
93
+
94
+
95
+
96
+ ## Training results
97
+ Epoch | Explained Variance | Validation Loss | MAE | MSE | R2 | RMSE | Learning Rate
98
+ --- | --- | --- | --- | --- | --- | --- | ---
99
+ 1 | 0.28 | 0.386 | 0.157 | 0.046 | 0.262 | 0.215 | 0.001
100
+ 2 | 0.321 | 0.376 | 0.147 | 0.044 | 0.312 | 0.21 | 0.001
101
+ 3 | 0.339 | 0.372 | 0.145 | 0.043 | 0.332 | 0.206 | 0.001
102
+ 4 | 0.357 | 0.367 | 0.14 | 0.041 | 0.355 | 0.202 | 0.001
103
+ 5 | 0.349 | 0.369 | 0.139 | 0.042 | 0.343 | 0.205 | 0.001
104
+ 6 | 0.359 | 0.367 | 0.141 | 0.041 | 0.355 | 0.202 | 0.001
105
+ 7 | 0.35 | 0.368 | 0.141 | 0.042 | 0.346 | 0.204 | 0.001
106
+ 8 | 0.364 | 0.366 | 0.139 | 0.041 | 0.36 | 0.201 | 0.001
107
+ 9 | 0.361 | 0.366 | 0.134 | 0.041 | 0.355 | 0.202 | 0.001
108
+ 10 | 0.356 | 0.367 | 0.138 | 0.041 | 0.353 | 0.202 | 0.001
109
+ 11 | 0.357 | 0.367 | 0.137 | 0.041 | 0.355 | 0.202 | 0.001
110
+ 12 | 0.36 | 0.366 | 0.14 | 0.041 | 0.359 | 0.202 | 0.001
111
+ 13 | 0.37 | 0.363 | 0.136 | 0.04 | 0.37 | 0.199 | 0.001
112
+ 14 | 0.363 | 0.367 | 0.142 | 0.041 | 0.356 | 0.202 | 0.001
113
+ 15 | 0.364 | 0.364 | 0.14 | 0.04 | 0.362 | 0.201 | 0.001
114
+ 16 | 0.372 | 0.364 | 0.136 | 0.04 | 0.369 | 0.2 | 0.001
115
+ 17 | 0.373 | 0.367 | 0.141 | 0.041 | 0.362 | 0.202 | 0.001
116
+ 18 | 0.371 | 0.363 | 0.137 | 0.04 | 0.37 | 0.2 | 0.001
117
+ 19 | 0.373 | 0.363 | 0.135 | 0.04 | 0.372 | 0.199 | 0.001
118
+ 20 | 0.362 | 0.365 | 0.135 | 0.041 | 0.359 | 0.201 | 0.001
119
+ 21 | 0.363 | 0.367 | 0.136 | 0.041 | 0.358 | 0.202 | 0.001
120
+ 22 | 0.37 | 0.365 | 0.137 | 0.04 | 0.368 | 0.2 | 0.001
121
+ 23 | 0.374 | 0.363 | 0.136 | 0.04 | 0.37 | 0.2 | 0.001
122
+ 24 | 0.376 | 0.363 | 0.139 | 0.04 | 0.373 | 0.199 | 0.001
123
+ 25 | 0.373 | 0.364 | 0.138 | 0.04 | 0.37 | 0.2 | 0.001
124
+ 26 | 0.384 | 0.361 | 0.133 | 0.039 | 0.382 | 0.198 | 0.0001
125
+ 27 | 0.388 | 0.36 | 0.135 | 0.039 | 0.386 | 0.197 | 0.0001
126
+ 28 | 0.39 | 0.359 | 0.134 | 0.038 | 0.389 | 0.196 | 0.0001
127
+ 29 | 0.391 | 0.36 | 0.135 | 0.038 | 0.389 | 0.196 | 0.0001
128
+ 30 | 0.389 | 0.36 | 0.135 | 0.039 | 0.388 | 0.197 | 0.0001
129
+ 31 | 0.392 | 0.359 | 0.132 | 0.038 | 0.391 | 0.196 | 0.0001
130
+ 32 | 0.393 | 0.358 | 0.133 | 0.038 | 0.393 | 0.196 | 0.0001
131
+ 33 | 0.395 | 0.358 | 0.131 | 0.038 | 0.395 | 0.195 | 0.0001
132
+ 34 | 0.397 | 0.358 | 0.132 | 0.038 | 0.395 | 0.195 | 0.0001
133
+ 35 | 0.395 | 0.358 | 0.132 | 0.038 | 0.395 | 0.195 | 0.0001
134
+ 36 | 0.39 | 0.359 | 0.135 | 0.039 | 0.39 | 0.196 | 0.0001
135
+ 37 | 0.397 | 0.358 | 0.131 | 0.038 | 0.397 | 0.195 | 0.0001
136
+ 38 | 0.394 | 0.358 | 0.133 | 0.038 | 0.392 | 0.196 | 0.0001
137
+ 39 | 0.397 | 0.358 | 0.131 | 0.038 | 0.396 | 0.195 | 0.0001
138
+ 40 | 0.4 | 0.357 | 0.133 | 0.038 | 0.398 | 0.195 | 0.0001
139
+ 41 | 0.399 | 0.358 | 0.132 | 0.038 | 0.396 | 0.195 | 0.0001
140
+ 42 | 0.399 | 0.357 | 0.133 | 0.038 | 0.397 | 0.195 | 0.0001
141
+ 43 | 0.402 | 0.357 | 0.133 | 0.038 | 0.401 | 0.194 | 0.0001
142
+ 44 | 0.403 | 0.357 | 0.131 | 0.038 | 0.401 | 0.194 | 0.0001
143
+ 45 | 0.403 | 0.357 | 0.132 | 0.038 | 0.402 | 0.194 | 0.0001
144
+ 46 | 0.401 | 0.357 | 0.13 | 0.038 | 0.4 | 0.194 | 0.0001
145
+ 47 | 0.4 | 0.357 | 0.129 | 0.038 | 0.397 | 0.195 | 0.0001
146
+ 48 | 0.404 | 0.356 | 0.13 | 0.038 | 0.402 | 0.194 | 0.0001
147
+ 49 | 0.402 | 0.357 | 0.131 | 0.038 | 0.401 | 0.194 | 0.0001
148
+ 50 | 0.401 | 0.357 | 0.132 | 0.038 | 0.4 | 0.194 | 0.0001
149
+ 51 | 0.402 | 0.358 | 0.134 | 0.038 | 0.396 | 0.195 | 0.0001
150
+ 52 | 0.405 | 0.356 | 0.131 | 0.037 | 0.404 | 0.194 | 0.0001
151
+ 53 | 0.405 | 0.357 | 0.131 | 0.038 | 0.403 | 0.194 | 0.0001
152
+ 54 | 0.402 | 0.357 | 0.132 | 0.038 | 0.401 | 0.194 | 0.0001
153
+ 55 | 0.405 | 0.356 | 0.129 | 0.038 | 0.403 | 0.194 | 0.0001
154
+ 56 | 0.405 | 0.357 | 0.128 | 0.038 | 0.402 | 0.194 | 0.0001
155
+ 57 | 0.405 | 0.356 | 0.129 | 0.038 | 0.403 | 0.194 | 0.0001
156
+ 58 | 0.406 | 0.356 | 0.13 | 0.038 | 0.404 | 0.194 | 0.0001
157
+ 59 | 0.406 | 0.356 | 0.129 | 0.037 | 0.405 | 0.194 | 1e-05
158
+ 60 | 0.408 | 0.356 | 0.13 | 0.037 | 0.406 | 0.193 | 1e-05
159
+ 61 | 0.407 | 0.355 | 0.13 | 0.037 | 0.407 | 0.193 | 1e-05
160
+ 62 | 0.406 | 0.356 | 0.132 | 0.038 | 0.404 | 0.194 | 1e-05
161
+ 63 | 0.409 | 0.356 | 0.129 | 0.037 | 0.408 | 0.193 | 1e-05
162
+ 64 | 0.409 | 0.355 | 0.13 | 0.037 | 0.408 | 0.193 | 1e-05
163
+ 65 | 0.406 | 0.356 | 0.131 | 0.038 | 0.405 | 0.194 | 1e-05
164
+ 66 | 0.409 | 0.355 | 0.13 | 0.037 | 0.408 | 0.193 | 1e-05
165
+ 67 | 0.408 | 0.355 | 0.13 | 0.037 | 0.408 | 0.193 | 1e-05
166
+ 68 | 0.407 | 0.356 | 0.13 | 0.037 | 0.406 | 0.193 | 1e-05
167
+ 69 | 0.409 | 0.355 | 0.13 | 0.037 | 0.408 | 0.193 | 1e-05
168
+ 70 | 0.409 | 0.356 | 0.131 | 0.037 | 0.407 | 0.193 | 1e-05
169
+ 71 | 0.407 | 0.356 | 0.13 | 0.037 | 0.407 | 0.193 | 1e-05
170
+ 72 | 0.408 | 0.356 | 0.13 | 0.037 | 0.407 | 0.193 | 1e-05
171
+ 73 | 0.409 | 0.355 | 0.13 | 0.037 | 0.408 | 0.193 | 1.0000000000000002e-06
172
+ 74 | 0.409 | 0.355 | 0.128 | 0.037 | 0.409 | 0.193 | 1.0000000000000002e-06
173
+ 75 | 0.406 | 0.356 | 0.13 | 0.037 | 0.405 | 0.194 | 1.0000000000000002e-06
174
+ 76 | 0.408 | 0.356 | 0.128 | 0.037 | 0.406 | 0.193 | 1.0000000000000002e-06
175
+ 77 | 0.405 | 0.356 | 0.132 | 0.038 | 0.404 | 0.194 | 1.0000000000000002e-06
176
+ 78 | 0.409 | 0.355 | 0.131 | 0.037 | 0.409 | 0.193 | 1.0000000000000002e-06
177
+ 79 | 0.402 | 0.357 | 0.131 | 0.038 | 0.4 | 0.195 | 1.0000000000000002e-06
178
+ 80 | 0.406 | 0.356 | 0.131 | 0.037 | 0.405 | 0.194 | 1.0000000000000002e-06
179
+ 81 | 0.409 | 0.356 | 0.131 | 0.037 | 0.408 | 0.193 | 1.0000000000000002e-07
180
+ 82 | 0.409 | 0.356 | 0.131 | 0.037 | 0.407 | 0.193 | 1.0000000000000002e-07
181
+ 83 | 0.41 | 0.356 | 0.13 | 0.037 | 0.407 | 0.193 | 1.0000000000000002e-07
182
+ 84 | 0.408 | 0.356 | 0.131 | 0.037 | 0.406 | 0.193 | 1.0000000000000002e-07
183
+
184
+
185
+ ---
186
+
187
+ # CO2 Emissions
188
+
189
+ The estimated CO2 emissions for training this model are documented below:
190
+
191
+ - **Emissions**: 0.22861184690098074 grams of CO2
192
+ - **Source**: Code Carbon
193
+ - **Training Type**: fine-tuning
194
+ - **Geographical Location**: Brest, France
195
+ - **Hardware Used**: NVIDIA Tesla V100 PCIe 32 Go
196
+
197
+
198
+ ---
199
+
200
+ # Framework Versions
201
+
202
+ - **Transformers**: 4.41.1
203
+ - **Pytorch**: 2.3.0+cu121
204
+ - **Datasets**: 2.19.1
205
+ - **Tokenizers**: 0.19.1
206
+