File size: 6,661 Bytes
c12a65c 358d884 c12a65c 358d884 c12a65c 358d884 c12a65c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import pickle
import pretty_midi
import gradio as gr
from music21 import *
from midi2audio import FluidSynth
import torch
import torch.nn as nn
from torch.nn import functional as F
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
file_path = './objects/int_to_note.pkl'
with open(file_path, 'rb') as f:
int_to_note = pickle.load(f)
file_path = './objects/note_to_int.pkl'
with open(file_path, 'rb') as f:
note_to_int = pickle.load(f)
class GenerationRNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size, n_layers=1):
super(GenerationRNN, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.n_layers = n_layers
self.embedding = nn.Embedding(input_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size, n_layers)
self.decoder = nn.Linear(hidden_size * n_layers, output_size)
def forward(self, input, hidden):
# Creates embedding of the input texts
#print('initial input', input.size())
input = self.embedding(input.view(1, -1))
#print('input after embedding', input.size())
output, hidden = self.gru(input, hidden)
#print('output after gru', output.size())
#print('hidden after gru', hidden.size())
output = self.decoder(hidden.view(1, -1))
#print('output after decoder', output.size())
return output, hidden
def init_hidden(self):
return torch.zeros(self.n_layers, 1, self.hidden_size).to(device)
def predict_multimomial(net, prime_seq, predict_len, temperature=0.8):
'''
Arguments:
prime_seq - priming sequence (converted t)
predict_len - number of notes to predict for after prime sequence
'''
hidden = net.init_hidden()
predicted = prime_seq.copy()
prime_seq = torch.tensor(prime_seq, dtype = torch.long).to(device)
# "Building up" the hidden state using the prime sequence
for p in range(len(prime_seq) - 1):
input = prime_seq[p]
_, hidden = net(input, hidden)
# Last character of prime sequence
input = prime_seq[-1]
# For every index to predict
for p in range(predict_len):
# Pass the inputs to the model - output has dimension n_pitches - scores for each of the possible characters
output, hidden = net(input, hidden)
# Sample from the network output as a multinomial distribution
output = output.data.view(-1).div(temperature).exp()
predicted_id = torch.multinomial(output, 1)
# Add predicted index to the list and use as next input
predicted.append(predicted_id.item())
input = predicted_id
return predicted
def create_midi(prediction_output):
""" convert the output from the prediction to notes and create a midi file
from the notes """
offset = 0
output_notes = []
# create note and chord objects based on the values generated by the model
for pattern in prediction_output:
# pattern is a chord
if ('.' in pattern) or pattern.isdigit():
notes_in_chord = pattern.split('.')
notes = []
for current_note in notes_in_chord:
new_note = note.Note(int(current_note))
new_note.storedInstrument = instrument.Piano()
notes.append(new_note)
new_chord = chord.Chord(notes)
new_chord.offset = offset
output_notes.append(new_chord)
# pattern is a note
else:
new_note = note.Note(pattern)
new_note.offset = offset
new_note.storedInstrument = instrument.Piano()
output_notes.append(new_note)
# increase offset each iteration so that notes do not stack
offset += 0.5
midi_stream = stream.Stream(output_notes)
return midi_stream
def get_note_names(midi):
s2 = instrument.partitionByInstrument(midi)
piano_part = None
# Filter for only the piano part
instr = instrument.Piano
for part in s2:
if isinstance(part.getInstrument(), instr):
piano_part = part
notes_song = []
if not piano_part: # Some songs somehow have no piano parts
# Just take the first part
piano_part = s2[0]
for element in piano_part:
if isinstance(element, note.Note):
# Return the pitch of the single note
notes_song.append(str(element.pitch))
elif isinstance(element, chord.Chord):
# Returns the normal order of a Chord represented in a list of integers
notes_song.append('.'.join(str(n) for n in element.normalOrder))
return notes_song
def process_input(input_midi_file, input_randomness, input_duration):
print(input_midi_file.name)
midi = converter.parse(input_midi_file.name)
note_names = get_note_names(midi)
int_notes = [note_to_int[note_name] for note_name in note_names]
generated_seq_multinomial = predict_multimomial(model, int_notes, predict_len = 100, temperature = 2.2)
generated_seq_multinomial = [int_to_note[e] for e in generated_seq_multinomial]
pred_midi_multinomial = create_midi(generated_seq_multinomial)
pred_midi_multinomial.write('midi', fp='result.midi')
# sound_font = "/usr/share/sounds/sf2/FluidR3_GM.sf2"
FluidSynth().midi_to_audio('result.midi', 'result.wav')
return 'result.wav', 'result.midi'
file_path = './objects/model_cpu.pkl'
with open(file_path, 'rb') as f:
model = pickle.load(f)
midi_file_desc = """
This model allows to generate music based on your input.
Please upload a MIDI file below, choose music randomness and duration. Enjoy!
"""
article = """# Music Generation
This project has been created by the students of Ukrainian Catholic University for our ML course.
We are using a GRU model to output new notes based on the given input. You can find more information at our Git repo: https://github.com/DmytroLopushanskyy/music-generation
We are using a language model to create music by treating a musical standard MIDI a simple text, with tokens for note values, note duration, and separations to denote movement forward in time.
"""
iface = gr.Interface(
fn=process_input,
inputs=[
gr.inputs.File(label=midi_file_desc),
gr.inputs.Slider(0, 250, default=100, step=50),
gr.inputs.Radio([10, 20, 30], type="value", default=20)
],
outputs=["audio", "file"],
article=article,
# examples=['examples/mozart.midi']
)
iface.launch()
|